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HETEROGENEOUS SOLIDS AND THE MICRO/MACRO
CONNECTION: STRUCTURE AND ELASTICITY IN
ARCHITECTURALLY COMPLEX MEDIA AS EMERGENT
COLLECTIVE PHENOMENA

Paul M. Goldbart
Department of Physics and Institute for Condensed Matter Theory,
University of Illinois at Urbana-Champaign, USA

Launched before the atomic hypothesis took hold, elasticity theory is a spectacular
achievement. A continuum-level description, it provides a powerful toolkit for
determining how architecturally simple solids such as crystals respond macroscopically
to stress, whilst encoding microscopic, atomic-realm details parsimoniously, via a
few parameters. Solids that are architecturally complex at the atomic level—such
as vulcanized rubber, gels and glasses—are commonly addressed using elasticity
theory, too. However, their microscopic-level irregularity raises new issues, not only
of elasticity but also of structure: How do the elastic ‘constants’ of such media
fluctuate across a sample? Do such media strain non-affinely in response to stresses?
Are there regional variations in the position-fluctuations of the atoms? More generally,
can the structure and elasticity of architecturally complex solids be viewed as emergent
collective phenomena, determinable from their underlying microscopic thermal motion
and characterizable by some suitable continuum theory?

Keywords: Elasticity; Emergent phenomena; Heterogeneity; Random solids; Statistical mechanics;
Vulcanized matter

INTRODUCTORY REMARKS

In this note, I sketch the essential elements of a microscopic approach to the
physical properties of architecturally complex media—pioneered by Sam Edwards
in the mid-1970s [1]—and the modern, continuum-based notions of structure and
elasticity fathered by the Edwards approach [2, 5]. At the heart of this microscopic
approach is an extension of statistical mechanics that enables the handling of
architecturally complex media, with their two distinct classes of microscopic random
variables: (i) the (equilibrating) atomic coordinates, and (ii) the (fixed) descriptors
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2 P. M. GOLDBART

of the architectural complexity. Edwards’ bold extension hints at a continuum
theory for architecturally complex media whose mathematical form would, I believe,
be hard to divine without Edwards’ microscopic intervention. In particular, the
basic fields of this continuum theory inhabit a strange world, depending on a
continuously tunable number of copies of the three-dimensional position-vector. This
curious tunability has the virtue of permitting the encoding and determination
of detailed information about the emergent, spatially heterogeneous structure and
elasticity of complex solids. This information embodies the physical notion that the
structure and elasticity of complex solids should be characterized not by ‘constant’
parameters but by statistical distributions.

ARCHITECTURALLY SIMPLICITY VS. ARCHITECTURAL COMPLEXITY

Let us reflect on two representative types of medium. On the one hand,
consider a collection of many copper atoms. Because its chemical make-up is
completely specified via a small amount of information—the type and number of
atoms—we term such a system architecturally simple. On the other hand, consider
a collection of many, long, flexible macromolecules that originally are identical
to one another but subsequently are cross-linked via some chemical process that
bonds randomly selected atoms on randomly selected macromolecules, essentially
permanently—vulcanized rubber. Let the number of these bonds be large (e.g.,
comparable to the number of macromolecules). In addition to providing the type
and number of the macromolecules, a complete specification of the chemical make-
up of the system requires the provision of the large, random information set
specifying which macromolecules are connected to one another and where on
them the connections reside. For this reason, we term such systems architecturally
complex; we shall be concerned with such systems, the physical features of theirs that
arise from this complexity, and the conceptual and technical challenges that their
determination present.

What features do we have in mind? As we discuss further, the introduction
of a sufficiently large number of cross-links changes the equilibrium state of a
system of macromolecules: from a liquid, readily relaxing to accommodate static,
macroscopic alterations in the shape (but not the volume) of the sample; to a solid,
responding to shape-altering strains by developing persistent stresses that would,
for all time, restore the shape held at the time of cross-linking. But this random
solidness is not, at least in any elementary way, foreshadowed by the microscopic
structure of the medium. In contrast with crystalline media, for which (at least
in three and more dimensions of space) rigidity is accompanied by the reduction
of the (large) continuous translational invariance of the particle density to the
smaller (but still constructive) discrete translation invariance of the crystal lattice,
the random solidity of architecturally complex media is not associated with the
emergence of spatial regularity. Instead, the ordering can be thought of as taking
place in the time domain: cross-linking ‘traps in,’ at least to some degree, the random
configuration of the atoms present at the time of cross-linking. Thus, snapshots of
atom locations taken today or tomorrow will both reveal random structure, with
spatial organization only at the shortest length-scales. But in snapshots of liquids,
today’s and tomorrow’s randomness will be essentially uncorrelated, whereas in
random solids they will be correlated, all the more so if the cross-linking is strong.
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ELASTICITY THEORY AND MICRO/MACRO CONNECTION 3

Thus, the random solid is characterized via the permanence of its random
spatial structure, and we shall need to ascertain how to characterize such states.
Their randomness necessarily brings heterogeneity: distinct regions of the medium
are distinct environments, and the behavior of the atoms inhabiting them will
reflect this, e.g., via their RMS thermal (or quantal) fluctuations, which will be
distributed statistically. Moreover, in the absence of any surviving symmetry (such
as a crystalline lattice), how the medium responds internally to a simple, externally
imposed shape-deformation is no longer stringently constrained by symmetry.
Instead, some regions will be more strongly displaced and others less so, in a
random way that results from a competition amongst the complex architectural
elements. (This is the phenomenon of non-affine response.) The entire sample is a
single unit cell containing roughly Avogadro’s number of particles.

So we see that, at least in settings such as vulcanized media, architectural
complexity is not a mere detail. Rather, it is the essence of the matter, fundamental
both in driving the formation of the random solid state and in determining its
emergent structure and properties.

WHAT DOES STATISTICAL MECHANICS SEEK TO ACCOMPLISH?

Imagine that we are in possession of a complete understanding of the
atoms or molecules that constitute our system, including the collection of possible
conformations that they may adopt and the interactions between the constituents.
As a practical matter, such information may be beyond reach, but let us not worry
about that. We would like to use the Gibbs formulation of equilibrium statistical
mechanics to develop a picture of the structure and elastic response of the random
solid state that sufficient cross-linking induces, along with the characteristics of
the cross-linking-triggered phase transition from the liquid state to this state. This
entails—inter alia—computing the partition function of the canonical ensemble (as
we are primarily concerned with systems at a prescribed temperature T ). To do
this, we need a scheme for delineating the accessible configurations and computing
their energies. The energy aspect is not unusual, so I shall not dwell on it; but the
delineation of the accessible configuration is, if (as we shall) we choose to idealize
the consequence of each of the cross-links as a holonomic constraint that eliminates
configurations in which any cross-linked pair of atoms fail to remain essentially
‘touching’ one another. Thus, we need a scheme for doing statistical mechanics in
the presence of many random constraints; this is what Edwards created and I now
sketch.

Consider a system whose configurations � can, in the absence of the
constraints, range over some set �, and let configuration � have energy ����.
Then, according to Gibbs, the thermodynamic properties are contained in the free
energy � , obtained via the canonical partition function � according to e−�/T =
� = ∑

�∈� e−����/T where we have chosen units in which Boltzmann’s constant is
unity. Now consider the impact of a large, random set of constraints, which we
denote by �. Let ���� �� be a ‘filter’ that is unity for configurations � obeying
the constraints � and vanishes for those that do not. Now the thermodynamic
properties are contained in the constraint-dependent free energy F���, obtained via
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4 P. M. GOLDBART

the constraint-dependent canonical partition function Z���:

e−F���/T = Z��� = ∑
�∈�

e−����/T���� �� (1)

Computing � is hard enough; computing F���, in the presence of the random
variables determining �, is out of the question for situations of interest. What proves
instructive, instead, is to regard the set � as being stochastic (e.g., by envisaging a
random process that gives rise to the constraints), to build a probability measure
on �, and then to take suitable averages, which we denoted by �· · · �. Viewed from
the standpoint of mathematical expedience, averaging Z��� to produce �Z� would
seem wise, in view of the location of � in Eq. (1). But this would not produce a
quantity of much physical significance because the summation over configurations
� would then occur on the same footing as the one over the constraints �, and
this would describe a physically inappropriate situation—one in which, rather than
being persistent, the constraints would explore their possible values simultaneously
with the configurations. This is not what is happening in the envisaged experiments.
Instead, they are correctly captured via the mathematically less expedient quantity

�F� = −T�lnZ� = −T

[
ln

∑
�∈�

e−����/T���� ��

]
(2)

which describes the (constraint-averaged or, more generally, disorder-averaged)
properties of a system in thermal equilibrium in the presence of permanent random
constraints or disorder. The problem is the logarithm. Even in the unlikely event
that the configuration sum in Eq. (2) could be computed despite the presence of the
vast number of random variables characterizing �, taking the logarithm and then
disorder averaging is surely beyond hope.

The bold remedy invoked by Edwards is known as the replica technique, and
it goes as follows. Recall the mathematical identity: limn→0�z

n − 1�/n = ln z. Apply
it to the logarithm in Eq. (2) to obtain

�F� = −T

[
lim
n→0

1
n

(
Z���n − 1

)]

= −T

[
lim
n→0

1
n

( ∑
�1�			��n∈�

e−
1
T

∑n

=1 ���


�
n∏


=1

���
� ��− 1
)]

(3)

where we have subtly represented a non-integral power as an n-fold product
of summations over configurations �
 of replicas of the original system. Next,
interchange averaging over constraints � and summing over configurations, to get

�F� = −T lim
n→0

1
n

( ∑
�1�			��n∈�

e−
1
T

∑n

=1 ���


�+ln�
∏n


=1 ���

���� − 1

)
(4)

where we have admittedly been cavalier about interchanging the order of taking
averages and limits.

Let me spell out the upshot of these formal manipulations. At the price
of having to deal with not 1 but n replicas of the original system (and to
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ELASTICITY THEORY AND MICRO/MACRO CONNECTION 5

negotiate the n → 0 limit) we have arrived at a formulation that no longer involves
random constraints. This is not to say there are no consequences of the random
constraints. On the contrary, the effective scheme for computing the energies of the
configurations of the replicated system now reads

∑n

=1 ���


�− T ln�
∏n


=1 ���

� ���,

in which averaging over the randomness has generated a coupling amongst the
replicas, whose form and strength that depends on the statistics of the constraints
and which will play the leading role in the developments to be described. Although
this replica strategy has been used for decades, it still has a maverick air to it: the
random constraints are gone, and in their place lie replicas coupled to one another.

It is worth noting that there are other, perhaps more physical, ways of
introducing replicas, which come to light once one sees the kinds of mathematical
detectors (known as order parameters) that are useful in the setting of random
solids [4] and other systems, such as spin glasses [8], that undergo phase transitions
to ‘randomly frozen’ states. But the key point I wish to stress here is this: the
configurations of the original system involve the coordinates of the many constituent
particles, each in three dimensions, and they give rise, say, to physical fields
describing densities that ‘live’ on three-dimensional space, just as the displacement,
strain, and stress fields of conventional elasticity theory do. Now that we have
arrived at a formulation involving replicas, it is not unreasonable for the fields that
enter to ‘live’ on n-fold replicated three-dimensional space, which is 3n dimensional,
in the n → 0 limit. In fact, the measure on the constraints �, mentioned after
Eq. (1), which accounts for the natural correlations amongst them, has the intriguing
consequence of increasing the number of replicas by unity, so that the fields to
be explored have arguments that number in the neighborhood not of 3n�n→0 but
rather of 3n�n→1. Hence the remarks in Introductory Remarks about a strange world
inhabited by the fields describing complex media.

NECESSITY AS THE MOTHER OF INVENTION: FIELDS AS DETECTORS

We have found ourselves with a strategy for computing—in principle—
the disorder average of the free energy of an architecturally complex medium,
formulated in terms of an architecturally simple but replicated medium. This is still a
many-body problem with interactions playing an essential, so just solving it directly
(e.g., computing the partition function) is unlikely to be a viable option. So, what
routes are open? In my opinion, the most profitable path is the development of
a statistical field theory. This would have us eliminating the microscopic freedoms
(e.g., the coordinates of the replicas of the particles) in favor of a continuous field
(e.g., a collective coordinate) � whose arguments �r0� r1� 	 	 	 � rn� are these replicated
coordinates—just as one might exchange the coordinates of the particles in a simple
fluid for a density field. Then the computation of the disorder-averaged free energy
takes the form of a functional integral over the collective coordinates (see, e.g.,
Ref. [3]),

∑
�1�			��n∈�

e−
∑n


=1 ���

�/T+ln�

∏n

=1 ���


���� ∼
∫

�� e−����/T (5)

for which one must construct the effective Hamiltonian ���� governing the statistics
of the field �. Amongst the virtues of this route are that it keeps the symmetry
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6 P. M. GOLDBART

structure of the theory at center-stage, it lends itself to natural and systematically
improvable schemes of analysis via well-established methods, and it empowers one
to focus on the long-distance aspects of the physics, which are the aspects that one
expects to be generic (and thus more lucrative). These virtues are especially valuable
when analyzing continuous phase transitions, of which the liquid-to-random-solid
transition, triggered by cross-linking, is an example—albeit a rather exotic one.

Although introduced formally, so as to arrive at a field-theoretic formulation,
the field � turns out to have a physical interpretation that precisely meets our
needs. It is the detector or order parameter that serves to distinguish between the
candidate equilibrium states of the system: liquid, crystalline solid, and random
solid. Its expectation value, weighted by exp�−�/T� (and Fourier transformed on
all arguments so that r
 → k
) can be shown to have the following meaning:

���0� k1� 	 	 	 � kn��� =
[
1
P

P∑
p=1

�e−ik1·r1p� · · · �e−ikn·rnp�
]

Here, p (=1� 	 	 	 � P) is an index running over the particles, and �· · · � denotes
an equilibrium expectation value. How does the advertised state-detection come
about? Try playing with this object for the situation in which all particles are
delocalized, as in the liquid state; you should find

∏n

=1 �0�k
 . Now try this for the

random solid state, i.e., when some fraction Q of the particles are localized at
random positions (i.e., with no crystallinity) and with random localization lengths 
distributed according to �; you should find the qualitatively distinct result

�1−Q�
n∏


=1

�0�k
 +Q�0�∑n

=1 k




∫
d���e−2

∑n

=1 �k
�2/2

A crystalline state would give yet a third qualitative form. Try it. These forms can
be examined from the perspective of spontaneous symmetry breakdown: the notion
that cross-linking (or some other correlating agent) can induce the equilibrium
states of the system less symmetric than the liquid state. If we could compute the
expectation value ���� and, in addition, the correlators of the fluctuations of �
about its expectation value, we would be able to extract Q and � and a considerable
amount of additional information about the random solid state. Can we do this?

COMPUTING THE INFORMATION CONVEYED BY THE DETECTOR

An exact computation of the expectation value of � and its fluctuation
correlators is not feasible. These quantities can, however, be computed in certain
regimes and at certain levels of approximation. Amongst the computations that
can be done is a Landau-style mean-field computation (see [9]) of ���� and the
disorder-averaged free energy �F�. These follow from constructing an approximation
to � , whose structure is stringently controlled by symmetries and length-scales, and
then by treating the functional integral in Eq. (5) at the saddle-point level (i.e.,
maximizing the integrand and neglecting fluctuations). Here is not the setting for
discussing the details; I just mention that results emerge for ���� and �F�, and hence
for strucutral characteristics of the random solid state, such as Q and �. Hence, one
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ELASTICITY THEORY AND MICRO/MACRO CONNECTION 7

begins to have a picture of the structure of the solid state of architecturally complex
media, characterized by the collective localization of particles about randomly
distributed centers of localization, as well as by spatial heterogeneity in the position
fluctuations of the constituents about their centers, quantified by the distribution �.
More accurate computations of ���� and the fluctuation correlators, incorporating
the effects of phonon-like fluctuations, will be mentioned in Goldstone Excitations
and Emergent Rigidity.

Going beyond mean-field theory, renormalization-group based computations
of correlators (and physical interpretations of them) have also been accomplished
in the liquid state, as the constraint density is increased towards the critical value at
which the random solidification transition occurs, and also precisely at the transition
point [6].

The computation of ���� , just discussed, gives us an image of the emergent
solidness of architecturally complex media in terms of structure. But what about
solidness in terms of response, e.g., to forces that would deform the macroscopic
shape of the system [7, 10]? This is, after all, the version of solidness that is most
familiar to us.

GOLDSTONE EXCITATIONS AND EMERGENT RIGIDITY

If a phase transition is accompanied by spontaneous symmetry breakdown
(SSB), and if it is a continuous symmetry that breaks, then a general route for
understanding the implications of SSB for rigidity presents itself, via a circle ideas
named for their originator in the high-energy physics context: Goldstone. The
essential point is that SSB implies that degenerate families of equilibrium states
exist, continuously connected to one another by the ‘lost parts’ of the symmetry.
As a result, a family of low-energy excitations—the Goldstone branch—must exist.
They amount to states that, locally, are equilibrium states, but which particular
member of the family is realized, locally, varies slowly across the system. In
general, such excitations are characterized by a ‘generalized stiffness,’ which reflects
their kinship with the elasticity of solids, for which the lost symmetry is that of
continuous translations and the Goldstone branch of excitations are the acoustic
phonons. For random solids this program can be traced through, and a generalized
stiffness can be obtained. What is not a priori evident is that the generalized stiffness
has anything to do with the elastic shear modulus, but the identification can be
made [10], so that the microscopic approach yields macroscopic elasticity, both form
and strength.

Unlike crystalline media, for architecturally complex media there is more to
the story. One can go further and construct the interactions between the Goldstone
excitations, but now the interpretation is subtler and more revealing [7]. A delicate
argument shows that these interactions describe the elastic heterogeneity of the
random solid state, i.e., they furnish a statistical characterization of the correlations
amongst the random spatial variations of the local elastic parameters and stress
that occur when these quantities are sampled over realizations of the medium. Thus,
we see that the replica theory is informing us not only about structure and its
heterogeneity but also about elasticity, its heterogeneity, and its correlations.

As is to be expected, Goldstone fluctuations have an especially strong impact
in two spatial dimension [10]. There, they have the effect of ‘unlocalizing’ the
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8 P. M. GOLDBART

particles, albeit weakly, and restoring the symmetry that the mean-field analysis
suggests is broken, and yet leaving the system rigid. This setting is not so extreme:
it can be realized by macromolecules confined to the interface between two fluids,
and has the virtue of emphasizing the logical distinction between localization and
rigidity.

WHAT OTHER TOPICS MIGHT HAVE BEEN DISCUSSED

These include connections with percolation ideas which, at least intuitively,
seem closely related to random solidification, even though they allow for only
one class of random variables (not two: equilibrating and fixed), they admit
no concept of particle motion or its qualitative changes brought about by the
transition, and they cannot describe emergent rigidity, let alone its heterogeneity.
Nevertheless, it has been shown that the theory of random solidification contains
percolation theory, in the sense that—as well as yielding localization, rigidity
and heterogeneity—it gives percolation theory’s answers to percolation theory
questions [6]. I might also have discussed recent applications to systems containing
additional, internal freedoms, such as cross-linked polymer blends [11] and liquid
crystalline elastomers [12]. However, for reasons of space I shall have to omit them.
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