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We consider a microscopic model of a polymer blend that is prone to phase separation. Permanent
cross-links are introduced between randomly chosen pairs of monomers, drawn from the
Deam-Edwards distribution. Thereby, not only density but also concentration fluctuations of the
melt are quenched-in in the gel state, which emerge upon sufficient cross-linking. We derive a
Landau expansion in terms of the order parameters for gelation and phase separation, and analyze
it on the mean-field level, including Gaussian fluctuations. The mixed gel is characterized by
thermal as well as time-persistent �glassy� concentration fluctuations. Whereas the former are
independent of the preparation state, the latter reflect the concentration fluctuations at the instant of
cross-linking, provided the mesh size is smaller than the correlation length of phase separation. The
mixed gel becomes unstable to microphase separation upon lowering the temperature in the gel
phase. Whereas the length scale of microphase separation is given by the mesh size, at least close
to the transition, the emergent microstructure depends on the composition and compressibility of the
melt. Hexagonal structures, as well as lamellas or random structures with a unique wavelength, can
be energetically favorable. © 2006 American Institute of Physics. �DOI: 10.1063/1.2200697�
I. INTRODUCTION

Cross-linked homopolymer blends exhibit a rich phase
diagram due to the competition between phase separation
and cross-linking. The simplest case is a blend of two ho-
mopolymer species, A and B, whose incompatibility is con-
trolled by the Flory-Huggins parameter � and which are
cross-linked irreversibly by some number Nc of chemical
bonds. In addition, the concentration fluctuations can be con-
trolled independently in the process of cross-linking �prepa-
ration state� and the well cross-linked gel �measurement
state�, e.g., by lowering the temperature in the gel. Hence we
have three control parameters: the incompatibility �p in the
preparation state, the incompatibility �m in the measurement
state, and the number of cross-links per chain, �=Nc /N,
where N denotes the total number of chains in the melt.

A statistical mechanical theory thus has to include not
only the average over the quenched disorder �cross-link re-
alization� but also the “memory” of the preparation state.
This can be achieved in the following way: We start from a
microscopic model, which accounts for the repulsive interac-
tion of all monomers, irrespective of species �excluded vol-
ume�, as well as for a repulsive interaction between the dif-
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ferent species only �incompatibility�. Cross-links are
introduced between randomly chosen pairs of monomers.
The probability for a particular cross-link configuration de-
pends on the preparation state of the system, such that
monomers with a high probability to be close in the prepa-
ration state have a high probability to be cross-linked.
Thereby the cross-links indeed preserve the memory of the
preparation state. Mathematically, this is achieved via the
Deam-Edwards distribution1 and the replica trick to average
over the quenched disorder.

We expect and indeed find signatures of the preparation
state in the gel. An example is given by the concentration
fluctuations that are frozen in by the cross-links. The frustra-
tion between the tendency towards phase separation of in-
compatible macromolecules and the connectivity constraints
of the network gives rise to glassy, i.e., time persistent, con-
centration fluctuations. If the preparation state is close to
macroscopic phase separation, then these glassy fluctuations
reflect the correlations in the melt at the moment of cross-
linking. If, on the other hand, the preparation state is far from
phase separation, then the frozen fluctuations are completely
random and follow the pattern set by the cross-links.

Lowering the temperature in the gel or, equivalently, in-
creasing the incompatibility at measurement �m will ulti-
mately give rise to microphase separation, while macro-
scopic demixing is suppressed by the cross-links. A variety

of microphases can exist, depending on the composition of
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the blend and its compressibility. If the mixture is symmetric,
having equal concentrations of A and B monomers, then
lamellas are energetically favorable, whereas for an asym-
metric mixture hexagons prevail. A finite compressibility en-
hances the tendency towards phase separation and can induce
a random pattern consisting of a superposition of many
lamellar phases of different orientations. In all cases the criti-
cal wave number is given by the mesh size or localization
length of the gel.

The subject of cross-linked homopolymer blends was
first addressed by de Gennes,2 who pointed out that the
mixed state is stabilized in the gel and eventually undergoes
microphase separation. His predictions were verified
experimentally3,4 with, however, a discrepancy in the scatter-
ing intensity for small wave number. This was traced back to
the neglect of concentration fluctuations, which are present
during cross-linking and are partially frozen in by the cross-
links. Subsequently, several attempts were made to include
these effects approximately.3,5–7 Studies of cross-linked sys-
tems, based on the microscopic model by Panyukov and
Rabin,8 were reported by Sfatos and Shakhnovich;9 as far as
homopolymer blends are concerned, these authors recover de
Gennes result within a microscopic approach. Computer
simulations were carried out by Lay et al.10 who studied, in
particular, the relation of the domain sizes to the mesh size of
the gel. In the last section of our paper we present a detailed
discussion of the literature in comparison with our own re-
sults.

The paper is organized as follows: In Sec. II we formu-
late a microscopic model of cross-linked polymer chains.
Subsequently �Sec. III� we derive a Landau expansion in
terms of the order parameters for gelation and phase separa-
tion. The Landau theory allows us to discuss the mixed gel
�Sec. IV� as well as microphase separation �Sec. V�. We
conclude with a short summary, a comparison with previous
theoretical work, and an outlook. A short account of our
results for the special case of an incompressible melt with
equal concentrations of A and B monomers was given previ-
ously in Ref. 11.

II. MODEL

A. Uncross-linked homopolymer blend

We first consider an uncross-linked blend of polymer,
modeled as a system of Gaussian phantom chains of equal

degree of polymerization L and step length b. The melt is

e=1
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taken to contain NA chains of type A and NB chains of type B.
In general, there will be an imbalance in concentration q
ª �NA−NB� /N, where N=NA+NB is the total number of
chains, occupying a volume V in d-dimensional space. The
monomer positions are denoted as Ra,i�s�, where a=A ,B re-
fers to the chain species, i=1, . . . ,Na enumerates the chains,
and s=0, . . . ,1 is the continuous index for a “site”on a chain.
It turns out to be convenient to express the monomer posi-
tions by dimensionless vectors ra,i�s�=�d /Lb2Ra,i�s�, so that
all lengths are measured in units of the radius of gyration of
the free chains, Rg

2=Lb2 /6. The rescaled volume reads V
ª �d /Lb2�d/2V.

The chain connectivity is described by the usual Wiener
Hamiltonian

HW =
kBT

2 �
a=A,B

�
i=1

Na �
0

1

ds�dra,i�s�
ds

	2

, �1�

the excluded volume term controlling compressibility reads

H� =
VkBT�

4N
�

a,a�=A,B

�
i,i�=1

Na �
0

1

ds�
0

1

ds���ra,i�s�

− ra�,i��s��� , �2�

and the incompatibility of the two monomer species is mod-
eled by the interaction

H� = −
V�

4N
�

a,a�=A,B

�2�a,a� − 1�

� �
i,i�=1

Na �
0

1

ds�
0

1

ds���ra,i�s� − ra�,i��s��� . �3�

Although the chain elasticity and the volume exclusion are of
mainly entropic origin, the incompatibility is assumed to be a
chiefly energetic contribution. Nevertheless, we let kBT=1 in
the following to simplify the expressions. Instead of chang-
ing the temperature, we shall tune � and particularly �,
which will serve as the inverse temperature.

B. Cross-linking

Chemical cross-linking induces a random number M of
permanent bonds between randomly selected pairs of mono-
mers; a particular realization of cross-links is denoted by C
= 
�ae , ie ,se ,ae� , ie� ,se���e=1

M . The links are modeled as hard con-
straints with zero bond length. The partition function of the

cross-linked melt, relative to a Rouse melt thus reads
Z�C� ª�

M

��rae,ie
�se� − rae�,ie�

�se���exp
− H� − H���W

ª

� Dra,i�s�
e=1
M ��rae,ie

�se� − rae�,ie�
�se���exp
− HW − H� − H��

� Dra,i�s�exp
− HW�
. �4�
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Here we have implicitly defined the expectation value �. . .�W

with respect to the Wiener Hamiltonian of the uncross-linked
melt.

C. Disorder average and Deam-Edwards distribution

We are interested in the properties of the “generic” melt
rather than in the properties of a melt with a specific set of
cross-links. Furthermore, we assume the system to be self-
averaging in the thermodynamic limit. Therefore we will
consider disorder averages of the observables with respect to
the quenched randomness of cross-links.

We specify the probability distribution of the cross-link
sets following the strategy of Deam and Edwards.1 We sup-
pose that the dominant cross-link sets are those that are most
compatible with the uncross-linked melt. More precisely, we
assume a probability distribution

PM�C� �
��N/V�M

M!
Zp�C� . �5�

Here, Zp is given by Eq. �4�, evaluated at �=�p and �=�p,
which characterize the system prior to cross-linking. Disor-
der averages with respect to PM will be denoted by square
brackets.

D. Order parameters for the homopolymer blend

To discriminate between the liquid state and the amor-
phous solid state of the polymer system, we use the order
parameter proposed in Ref. 12 as follows:

�̃k1,. . .,kg
ª

1

N
�

a=A,B
�
i=1

Na �
0

1

ds�exp�ik1ra,i�s���C

� ¯ � �exp�ikgra,i�s���C, �6�

for g=1,2 , . . ., and nonzero 
k��. The symbol �¯�C denotes
the thermal expectation value in the presence of a particular
realization C of cross-links. In the case g=1, Eq. �6� is the
thermal average of the monomer density in Fourier space,

	̃k ª
1

N
�

a=A,B
�
i=1

Na �
0

1

dse−ikra,i�s�. �7�

In the liquid state, a monomer explores the sample vol-
ume uniformly. Hence, the equilibrium value of the local
density is constant and the Fourier transform �exp�ikri�s���C
vanishes �except for k=0, which we exclude�. The order pa-
rameter �6� therefore is always zero in the liquid state.

In a solid, at least a finite fraction of the monomers are
localized about points ba,i�s� in space. For these monomers,
�exp�ikra,i�s���C�eikba,i�s��0. However, for an amorphous,
i.e., macroscopically translationally invariant �MTI� solid,

the disorder averaged expectation value ��̃k1,. . .,kg
� vanishes

unless k1+ ¯ +kg=0, see Ref. 12. In particular, ��	̃k�C�=0 in
the MTI state. Hence we can discriminate between the liquid
and the amorphous solid states by means of the g
2 values
of Eq. �6�. �For the signature of crystalline and globular
states, see Ref. 12�.

Throughout this article, we will also refer to the two

monomer species as “opposite charges.” The identification of
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As and Bs with positive and negative charges, respectively,
leads to a natural choice for an order parameter detecting
phase separation: the “charge density”

�̃k ª
1

N
�
i=1

NA �
0

1

dse−ikrA,i�s� −
1

N
�
i=1

NB �
0

1

dse−ikrB,i�s� �8�

measuring the local imbalance of the concentrations of A and
B.

In the general case of an asymmetric blend, in which
there is an excess of either A or B chains, the average charge

density is given by q ·N /V= �NA−NB� /V, so that �̃k serves as
an order parameter only for k�0. Homogeneous phase sepa-
ration is indicated by a nonzero expectation value of the
order parameter in the limit k→0. Microstructures, e.g.,
lamellas or hexagonally ordered cylinders, give rise to a non-

zero expectation value of ���̃k�C� at finite wave number. A
nonuniform charge density, in general, is accompanied by
mass density modulations, except for the incompressible
case.

In the gel phase we expect to find static charge fluctua-

tions ��̃k�C�0 for all wave numbers. If the gel state is a
homogeneous mixture of A and B chains, then the disorder

averaged charge density vanishes, i.e., ���̃k�C�=0. The
frozen-in fluctuations can only be detected by the glassy cor-

relations ���̃k�C��̃−k�C�. In general, the quadratic expectation

values ���̃k�̃−k�C� and ���̃k�C��̃−k�C� measure volatile and
time-persistent charge fluctuations in an a priori homoge-
neous mixture.

III. EFFECTIVE FREE ENERGY

The disorder averaged free energy

F = − �ln Z�C�� = − lim
n→0

��Z�n� − 1

n
�9�

is computed with the help of the replica trick. The nth power
of Z is made explicit using n independent copies �replicas� of
the system and an additional replica is introduced to account
for the Deam-Edwards distribution.12 The average over the
disorder can be carried out explicitly, yet at the cost of a
coupling between the formerly independent replicas, yielding

�Zn� ¬ Zn/Z0, �10�
where the replicated partition function is given by
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Zn =�exp�− Hn+1
� − Hn+1

� +
�V

4N
�

a,a�=A,B

�
i,i�=1

N �
0

1

dsds�

�=0

n

��ra,i
� �s� − ra�,i�

� �s�����
n+1

W

. �11�
Here, the ra,i
� �s� denotes the monomer positions in the �th

replica, �¯�n+1
W is the replicated Wiener average, and Hn+1

�

and Hn+1
� denote the replicated Hamiltonians of the excluded

volume and incompatibility interactions. The denominator
and the zeroth replica in the numerator are due to the Deam-
Edwards distribution �5� and reflect the situation prior to
cross-linking. Thus, we have to distinguish between the ze-
roth replica, characterized by �p and �p �preparation en-
semble�, and the other n replicas, reflecting the situation after
cross-linking, characterized by �m and �m �measurement en-
semble�. To account for the particular role of the zeroth rep-
lica we use the notation

��
ª ��p if � = 0

�m otherwise
�

and �12�

state. A sufficiently strong excluded volume interaction pre-
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��
ª ��p if � = 0

�m otherwise.
�

The many-particle problem of the polymer melt can be
formally reduced to a two-chain problem �one chain of each
species�. It is convenient to introduce �n+1�-fold replicated
vectors x̂ª �x0 , . . . ,xn�, and to express the exponents in Eq.
�11� in Fourier space, which leads to quadratic terms in the
monomer and charge densities. These can be linearized by
means of Hubbard-Stratonovich transformations, yielding

Zn = Bn ·� D�
�,�,	��exp
− nFn�
�,�,	��� �13�

with a constant Bn=exp
�N /2��−n�m+nq2�m+ ��n+1�V−n
−1����=1+O�n� and the effective free energy
nFn�
�,�	�� =
N

2 �
�,k

��� 1

�� −
q2

�̃�	��k
��2 +

1

�̃�
�	k

��2 +
iq

�̃�
�	k

��−k
� + 	−k

� �k
��	

+
NVn

2�
�

k̂

��k̂�2 − NA ln z+�
�,�,	�� − NB ln z−�
�,�,	�� , �14�

where

z±�
�,�,	�� ª�exp��
�,k

��+ i	k
� − �q 
 1��k

���
0

1

dseikr��s� + V−n�
k̂

�k̂ · �
0

1

dseik̂r̂�s���
n+1

W

. �15�
The Wiener average now runs over a single replicated chain
having monomer positions r̂�s�. The auxiliary fields �k, 	k,
and �k̂ are pairwise dependent via �−k̂= ��−k̂�*, etc., thus the
� and � integrations in �13� are restricted to the half-spaces

k ·n�0 and k̂ · n̂�0 �with arbitrary nonzero constants n and

n̂�. The sums over the k� and k̂ are split into replica sectors:

The constant part Bn is composed of the k�=0 and k̂=0̂

contributions �zero replica sector�. The symbols �k� and �̄k̂

denote the sums over nonzero k �single replica sector� and

over k̂ with nonzero k� in at least two replicas �higher rep-
lica sector�, respectively, both restricted to the above sub-
spaces.

As expected, cross-links give rise to an attractive inter-
action between the chains, which, in the absence of excluded
volume, would cause the chains to collapse into a globular
vents this collapse, as can be read off the coefficient �̃�

ª��−� /Vn of the term quadratic in the density. Stability
requires �p�� and �m��.

The physical observables, moments of the local density
and charge density, are related to expectation values of the
fields according to

���̃k�C� =
1

�m
lim
n→0

��k
��n+1

F and

��	̃k�C� =
i

�m − �
lim
n→0

�	k
� + iq�k

��n+1
F

for k�0 and �
1, and
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��̃k1,. . .,kg
� =

1

�
lim
n→0

��k̂�n+1
F

for k̂= �0 ,k1 , . . . ,kg ,0 , . . . ,0� with g
2.
In asymmetric blends, which have an excess of either A

or B chain, the average charge density qN /V= �NA−NB� /V is
nonzero. To simplify the Landau expansion of the free en-
ergy it is then advantageous to either work with the fluctua-
tions ��=�−q of the charge density around its mean value
or, alternatively, shift the monomer density, as is done here.

IV. HOMOGENEOUSLY MIXED STATES

On the mean-field level, we approximate the functional
integral over �, 	, and � in �13� by using the saddle point
method, i.e., by the value of the integrand at the point

��̄ , 	̄ ,�̄� making the integrand stationary:

Zn � const · e−Fn��̄,	̄,�̄�, �16�

where, by definition, ��̄ , 	̄ ,�̄� satisfy the stationarity condi-
tions

� �Fn

��k
��

�̄,	̄,�̄

= 0, � �Fn

�	k
� �

�̄,	̄,�̄

= 0, � �Fn

��k̂
�

�̄,	̄,�̄

= 0.

�17�

A. Homogeneously mixed liquid state

One solution of the stationarity conditions �17� is the

trivial saddle point �̄= 	̄=�̄=0, corresponding to the homo-
geneously mixed liquid state. To assess its stability we con-
sider the Landau expansion to leading order around this point
as follows:

2n

�
Fn�
�,	,���

= �
�,k

�� 1

�n + gD�k2�	�	k
��2

+ �
k̂

� 1

�
− gD�k̂2�	��k̂�2 + 2iq�

�,k

� 1

���−k
� �k

�

+ �
�,k

�� 1

�� −
q2

�� − �1 − q2�gD�k2�	��k
��2

+ O��2,	2,�2� , �18�

where the Debye function gD is defined in Appendix B 1.
The stability limits of the homogeneous liquid can be read
off from the quadratic coefficients. As gD�k2� decreases
monotonically from 1 to zero, the stability against solidifica-
tion and demixing require ��1 and ��p ,�m��1/ �1−q2�,
respectively. Throughout this article, we assume that
��p ,�m���, i.e., that the excluded volume interaction is
strong enough to prevent density instabilities �see above�.

It should be noted that the condition ��p ,�m��1/ �1
−q2� denotes local stability limits only. In mean-field theory,
the phase separation transition for symmetric blends is of

second order, so the phase transition coincides with the limit
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of local stability. In asymmetric blends the transition is of
first order. The loss of local stability, as given by the condi-
tions above, then defines a spinodal, and the transition occurs
at a lower value of �. The location of the spinodal depends
on the average charge q, with a larger critical incompatibility
�i.e., lower critical temperature� for more asymmetric mix-
tures.

The gelation of the homogeneous liquid, driven by in-
creasing the cross-link concentration, and the microphase
separation of the resulting gel, induced by cooling, will be
addressed in the following sections.

B. Cross-linking in the homogeneously mixed state

In the liquid state, the polymer blend phase separates
macroscopically beyond the demixing threshold. The subse-
quent gelation of such a macrophase-separated melt would
result, apart from the interface, in just two pieces of gels
having different compositions. It is more interesting to con-
sider a gel prepared from a homogeneous melt to study phase
separation in the gel phase. As we shall see below, such a gel
shows glassy charge density patterns and, as anticipated, mi-
crophase separation instead of macroscopic demixing. There-
fore, the discussion will be restricted to cross-linking in a
homogeneously mixed blend, �p�1/ �1−q2�, including un-
dercooled mixtures for q�0.

Upon gelation, the saddle point �̄k̂=0 will become un-
stable, making it necessary to complement the expansion
�18� of the free energy with the third-order terms as follows:

2n

N
Fn�
�,	,��� = �

�,k

�� 1

�� − �1 − q2�gD�k2�	��k
��2

+ �
k̂

� 1

�
− gD�k̂2�	��k̂�2

− �
�1��2

�
k1,k2

� �
p̂

�p̂�k1

�1�k2

�2�p�1,k1
�p�2k2

−
1

3 �
k̂1,2,3

�k̂1
�k̂2

�k̂3
�k̂1+k̂2+k̂30̂ , �19�

The vertex functions of the cubic terms have been approxi-
mated by their zero wave-number values, the complete ex-
pressions being given in Appendix B 1. This approximation
is well justified, because the gelation transition is always
continuous, so that the relevant length scales are very large,
compared with the scales of the microscopic correlations.
Here, we have taken the limit of an incompressible melt,
which is achieved by integrating out the density fluctuations

on the Gaussian level and subsequently taking the limit �̃
→�.

We first discuss a gel in the homogeneously mixed state

�̄k
�=0, assuming �m�1/ �1−q2�. In the following,12 we con-

sider the order parameter hypothesis

�̄k̂ = �k̃,0 · Q�
0

�

d�p���exp�− k̂2

2�
	 �20�

˜ n �
with the shorthand kª��=0k . Here, Q denotes the fraction
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of chains that are localized, i.e., the gel fraction; the local-
ization lengths are distributed according to the distribution
function p���. Both have to be determined self-consistently
as a solution of the stationarity conditions �17�.

The first two of the stationarity conditions are satisfied
for any Q and p���. The third condition is independent of the
incompatibility parameter. Hence, in the homogeneously
mixed regime, the task of determining Q and p��� on the
saddle point level is exactly the same as in the pure gelation
problem in Ref. 12. In the present notation, the result for the
solid state, i.e., ��1, reads

�̄k̂ � �k̃,0 · 2��� − 1� · ���4

3

k̂2

� − 1
	

= �k̃,0 · ��� − 1� · w� k̂2

2�� − 1�
	 , �21�

with the gel fraction approximately given by Q�2��−1�.
The scaling function ��x� is defined in Ref. 12 �see Appen-
dix C 1 for details�; for convenience we define the shorthand
w�x�ª���8x /3�.

C. Stability of the homogeneously mixed gel

Starting from a gel prepared from a homogeneous melt,
i.e., �p�1/ �1−q2�, we now allow the incompatibility to be
changed after cross-linking. In order to keep the gel homo-
geneous, �m must remain smaller than the critical value �crit

for �micro-�phase separation. As can be seen from the term
coupling �k and �k̂ in the effective free energy �19�, the gel
network stabilizes the mixed state; the details are discussed
in the following.

As long as the gel is homogeneous, the order parameter
�21� solves the stationarity conditions �17�. To determine the
stability of the mixed state, we need the second derivative of
Fn with respect to the charge density, evaluated at the saddle
point. We restrict the discussion to a weak gel, i.e., �−1
�1, so that the saddle point value of �k̂ is small and the
Hessian can be approximated by its expansion to linear order

in �̄k̂. It then can be read off from the Landau expansion �19�
with �k̂ replaced by the explicit saddle point value �21�. The

latter vanishes unless k̃=0: hence there is no coupling be-
tween the different k’s, and the Hessian can be calculated
independently for each wave vector. We obtain

� �2Fn

��k
�1��−k

�2
�

�̄,�̄

� N�1 − q2� · A�1�2
�k� , �22�

where

A�1�2
ª�

c − b ¯ − b

− b a � ]

] � � − b

− b ¯ − b a
� �23�

with

a ª � 1
2 − gD�k2�	 ,
�1 − q ��m
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b ª ��� − 1�w�k2/�� − 1�� ,

and

c ª � 1

�1 − q2��p
− gD�k2�	 . �24�

The stability of the homogeneous state is equivalent to
the positivity of A. In the limit n→0, its eigenvalues are
given by

�1�k� ª c �nondegenerate� �25�

and

�2�k� ª a + b �n − fold degenerate� . �26�

As we assume cross-linking in the mixed phase, �1 is always
positive, and thus the stability condition reduces to �2�0 or,
equivalently, �m��crit��� with

�1 − q2��crit��� ª 1/max
k


gD�k2� − ��� − 1�w�k2/�� − 1��� .

�27�

Figure 1 shows �2�k� for �m=1/ �1−q2� and different
cross-link concentrations. Increasing �m shifts the curve
downwards. Apparently, an instability towards demixing first
occurs for a nonzero wave number kc, which maximizes the
above expression.

We consider the case of a weak gel, so ���−1���−1,
and we can write gD�k2��1−k2 /3 as the Debye function
decays much more slowly than w�k2 / ��−1��. In this ap-
proximation, kc is given by

0 = � ��2

�k2 �
k=kc

�
1

3
+ w�� kc

2

�� − 1�
	 , �28�

which leads to kc
2�1.61��−1� and �1−q2��crit−1�kc

2 /3
+ ��−1�w�kc

2 / ��−1�r��0.98��−1�.
A more precise numerical analysis without these ap-

proximations yields

�1 − q2��crit − 1 = 0.98 · �� − 1� + 0.70 · �� − 1�2

+ O��� − 1�3� �29�

and

2 2 3

FIG. 1. Stability parameter �2�k� for �m=1/ �1−q2� as a function of k2.
kc = 1.61 · �� − 1� + 1.75 · �� − 1� + O��� − 1� � . �30�
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The instability for nonzero k implies that the gel under-
goes microscopic �rather than macroscopic� phase separa-
tion. This is to be expected, because cross-links permanently
connect different chains and thus prevent true macroscopic
phase separation. The “next best”state for the system is phase
separation up to the length scale of the network, i.e., the
typical mesh size, as given by the average localization length

����−1�. Hence the instability occurs at a critical wave

number kc�1/ �̄.
The instability is hampered by an increased density � of

cross-links and the asymmetry q of the composition. The
spinodals for the liquid blend and two solid gels with two
different degrees of cross-linking are shown in Fig. 2 as a
function of q. In contrast, the critical wave number remains
unchanged in agreement with the above argument—the criti-
cal wave number is determined by the mesh size, which is
unaffected by q. The microphase transition is addressed in
Sec. V, where it will be shown that the average charge also
influences the observed microstructure.

D. Pseudo phase diagram

Three parameters determine the state of the system: �
controls the number of cross-links, �p specifies the charge
fluctuations at preparation, and �m the charge fluctuations
after the gel has been prepared. Each of them can be chosen
such that the system is close to a critical point: �=1 corre-
sponds to the gelation transition, �p=1/ �1−q2� to macro-
scopic phase separation in the preparation ensemble, and
�m=�crit to microphase separation in the gel.

In Fig. 3 we show a phase diagram in the �m-� plane for
the special case q=0. �The spinodals of the asymmetric case
can be recovered by replacing � by �1−q2��.� The dashed
line �=1 separates the gel state and the liquid state. The
latter is further divided into a mixed and a macroscopically
phase separated liquid at �m=1 �solid line�. The dotted line
�m=�crit separates the mixed gel from the microphase sepa-
rated one.

The diagram in Fig. 3 is not a true equilibrium phase
diagram, because the state of the system also depends on the
preparation ensemble via �p. In particular, the microphases
are only obtained if cross-linking takes place in the homoge-

FIG. 2. Stability limits �crit��� as a function of the asymmetry q for the
liquid ���1� and gels with different strengths ��=1.1 and �=1.5�.
neously mixed phase. As a consequence, the transition line
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�=1 cannot be crossed from the macro- to the microphase
separated state for �m�1. The history of the gel is indicated
by a path in the diagram. Of particular interest are the three
paths a, b, and c. Path a amounts to cross-linking close to
macroscopic phase separation, �p→1, and the end point A
corresponds to a homogeneously mixed gel having long-
ranged frozen-in charge fluctuations. Along path b the sys-
tem is cross-linked in a preparation state that is far away
from macroscopic phase separation. The end point B corre-
sponds to a homogeneously mixed and rather weak gel, just
cross-linked enough to be solidlike. Along path c, the system
is prepared in the same way as on path b, however, more
cross-links are introduced, which strengthen the gel. Subse-
quently, the temperature is lowered �the incompatibility �m

increased�, so that the end point C is close to microphase
separation. These three histories are representative in the fol-
lowing sense. Each end point corresponds to a state close to
one critical point, as discussed above: point A is close to
macroscopic phase separation in the preparation ensemble,
�p=1; point B is close to the gelation transition, �=1; and
point C is close to microphase separation, �m=�crit. The
three states of the system, corresponding to the end points,
will be discussed in detail in the following sections.

E. Charge density correlations in the mixed gel

In this section we discuss the homogeneously mixed gel
phase, for which the order parameter for phase separation
vanishes. Nevertheless, there are thermal as well as quenched
charge fluctuations on various length scales. These can be
detected with the help of multiple correlation functions. On
the Gaussian level of approximation, these correlation func-
tions are given by the inverse of the Hessian matrix �23� as
follows:

��−k
�1�k

�2�n+1
F = �A−1��1�2

. �31�

The correlator that is off-diagonal in replica space accounts
for the frozen-in correlations and will be termed the glassy
correlator. It is given by

Sgl�k� ª ���̃−k���̃k�� = lim
n→�

��k
��−k

� � =
1

�m
2 ·

b�b + c�
c · �2

2 ;

�32�

see Eq. �8� for the definition of �̃. The replica-diagonal cor-

FIG. 3. Pseudo phase diagram of the polymer blend in the �-� plane. The
state of the system is, however, history dependent �see text for details�.
relator is the scattering intensity
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Ssc�k� ª ���̃−k�̃k�� = lim
n→0

��k
��−k

� �

=
1

�m
2 �b�b + c�

c · �2
2 +

1

�2
− �m	 , �33�

and the variance �or connected correlator� is given by

Svar�k� ª Ssc�k� − Sgl�k� =
1

�m
2 · � 1

�2
− �m	 . �34�

Whereas the glassy correlator Sgl�k� describes the static,
frozen-in correlations, the variance Svar�k� quantifies the
volatile, thermal fluctuations about the mean value. The scat-
tering intensity Ssc�k� is the sum of both contributions and
covers both thermal and static charge inhomogeneities.

1. Restriction to symmetric blends

In the following discussion of Ssc�k�, Sgl�k�, and Svar�k�
we shall confine ourselves to the case of symmetric blends,
yet without loss of generality: The scattering functions of the
asymmetric case are recovered via multiplication by �= �1
−q2� and the rescalings �p→��p and �m→��m. Further-
more, the distance to phase separation is replaced with the
distance to the spinodal in the asymmetric case. In the range
between the equilibrium phase transition and the spinodal,
the results then describe an undercooled mixture.

2. Length scales

The correlation functions are characterized by three
length scales which are determined by the parameters
�� ,�p ,�m� of preparation and measurement conditions.

First, there is the typical localization length � of the
monomers in the gel fraction, i.e., the mean mesh size of the
gel. From Eq. �21� we can infer that this length scale is
roughly given by

�l ª 1/�� − 1. �35�

Second, there is the decay length �p of the precritical demix-
ing fluctuations prior to gelation. This approximately reads

�p ª 1/�1 − �p. �36�

The third length characterizes the precritical fluctuations of
microphase separation, and is approximately given by

�m ª 1/��crit��� − �m. �37�

The three length scales measure, or are given by, the
inverse distance to the phase transitions of gelation and de-
mixing in the pre-cross-linking blend, and microphase sepa-
ration in the gel; hence they grow large when approaching
their respective transitions. In the following, we shall essen-
tially discuss three limiting regimes, in which the correlation
functions are determined by one of the three length scales
�p��l ,�m �point A�, �l��p ,�m �point B�, and �m��l ,�p

�point C�.

3. Glassy correlations

The glassy correlation function Sgl�k� describes time-

persistent charge inhomogeneities due to cross-linking. If the
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preparation ensemble is close to phase separation, then in-
stantaneous cross-linking will freeze in these fluctuations and
Sgl will be dominated by the pre-cross-linking fluctuations,
giving rise to a high value at zero wave vector. If, on the
other hand, the preparation ensemble is in a well-mixed state,
then cross-linking will introduce completely random, static
charge fluctuations, which subsequently can be enhanced by
approaching the microphase separation transition in the gel.
In the following, we discuss the three limiting cases �i.e.,
points A, B, and C� in detail.

We first consider a gel that is prepared from a melt close
to phase separation, i.e., �p� ��l ,�m��1, corresponding to
point A in Fig. 3. The network can freeze in correlations on
length scales larger than or comparable to its mesh size. For
�p��l, the pre-cross-linking fluctuations have long enough
scales to be frozen. Consequently, the glassy correlations re-
flect the pre-cross-linking fluctuations:

Sgl�k� �
�p

2

1 + k2�p
2/3

. �38�

The glassy correlations are proportional to �p
2 and decay on

the scale k��p
−1 set by the fluctuations of the preparation

ensemble. An example is included in Fig. 4.
In a weak gel, i.e., if �l� ��p ,�m��1 �point B�, the net-

work is rather wide-meshed, so that the fluctuations at prepa-
ration cannot be frozen in. Instead, there will be static charge

fluctuations ��̃k��0 on the scale of the network, which are
completely random and hence vanish, if averaged over cross-

link configurations, ���̃k��=0. They do, however, contribute
to the glassy correlations, which are given approximately by

Sgl�k� � 1
2Q�m

4 · w�k2�l
2� . �39�

These fluctuations always decay on the length scale of local-
ization, but they are enhanced in magnitude when approach-
ing microphase separation. An example of the glassy corre-
lations in this range is given in Fig. 5.

The crossover between the two scales is demonstrated in
Fig. 6, which shows Sgl�k� /Sgl�0� far from microphase sepa-
ration for �l=10. For the leftmost curve �p

2 =105��l
2=100,

−1

FIG. 4. Correlation functions for a gel prepared close to phase separation:
Sgl, Svar, and Ssc in units of 4�p

2�m
4 /�l

4 for �l
2=102, �p

2 =103, and �m
2 =10.
and hence the decay occurs at k��p . Upon decreasing �p,
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the curves shift to the right, until, for �l��p, the decay is
determined by �l. The inset shows the half-width at half-
maximum as a function of �p

−1.
Close to microphase separation, i.e., �m� ��l ,�p��1

�point C�, Sgl�k� is dominated by the critical fluctuations to-
wards microphase separation. In the absence of cross-links
there would be large-scale fluctuations towards macroscopic
demixing. In the gel, displacements are bounded by the lo-
calization length, so that Sgl�k� develops a peak at kc��l

−1,
where �2�k� becomes small; an example is included in Fig. 7.
Approaching the transition, the peak diverges as �2

−2�k�, and
the glassy correlations can be approximated by

Sgl�k� �
Q

��crit��� − �m + 1
2 �k2 − kc

2�2w��1�/kc
2�2 , �40�

where w� denotes the second derivative of the scaling func-
tion introduced below Eq. �21� and defined in Appendix C.

4. Thermal fluctuations

The variance Svar�k� of the charge fluctuations is inde-
pendent of the conditions at the time of cross-linking. Hence,

FIG. 5. Correlation functions for a weak gel: Sgl, Svar, and Ssc in units of �m
2

for �l
2=102, �p

2 =10, and �m
2 =10.

FIG. 6. Scale crossover in the glassy correlation function Sgl, normalized to
the value at k=0: Crossover from preparation close to demixing to a weak
gel, with �m=0.1, �l

2=102, and �p
2 =105 ,104.5 , . . . ,101 �from left to right�.

2 −2 −2
Inset: Half-width k1/2 of Sgl�k� crossing over from �p to �l �dashed line�.
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there are only two competing length scales, �l and �m. In case
of a weak gel, i.e., �l��m�1 �point B in Fig. 3�, Eq. �34�
reduces to

Svar�k� �
�m

2

1 + k2�m
2 /3

�41�

for small k, decaying with a half-width of k1/2��3/�m
2 , pro-

vided �m is not too small. Far away from the demixing
threshold, the fluctuations are hardly affected by the network
and look like critical fluctuations approaching macroscopic
phase separation. An example is shown in Fig. 5.

Close to microphase separation, i.e., �m��l�1 �point
C�, the fluctuations grow with increasing k until k reaches the
inverse localization length k��l

−1, beyond which they are
strongly suppressed by the network. The variance is approxi-
mately given by

Svar�k� �
1

�2
�

1

�crit��� − �m + 1
2 �k2 − kc

2�2w��1�/kc
2 , �42�

revealing a peak at k0�1/�l that has a height proportional to
�m

2 . See Fig. 7 for an example.

5. Scattering intensity

The behavior of the scattering function in the various
regimes can be inferred from the behaviors of Sgl�k� and
Svar�k�, as Ssc�k� is just the sum of them. A weak gel �point B�
preserves only a small amount of the precross-linking fluc-
tuations and can hardly restrict thermal fluctuations. Hence,
Ssc�k��Svar�k�, so the scattering function decays on the scale
k��m; see Fig. 5. In the other regimes, thermal fluctuations
are suppressed by the network, and Ssc�k��Sgl�k�. In a gel
prepared close to phase separation �point A�, the scattering
function decays on the scale k��p �Fig. 4�, whereas a gel
measured close to microphase separation �path C� reveals a

FIG. 7. Correlation functions for a gel measured close to microphase sepa-
ration: Sgl, Svar, and Ssc in units of �m

4 /�l
2 for �l

2=102, �p
2 =10, and �m

2 =103.
The wave-number squares are measured in units of kc

2.
peak at k�k0, diverging at the transition �Fig. 7�.
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V. MICROSTRUCTURES

At �m=�crit, the homogeneous gel becomes unstable
with respect to phase separation. As we have seen in Sec.
IV C, the instability first occurs for nonzero wave numbers,
indicating that the gel undergoes microscopic rather than
macroscopic phase separation. In this section we investigate
various microstructures, such as hexagons and lamellas with
a definite orientation, as well as a superposition of many
random orientations. The selection of a particular microstruc-
ture depends sensitively on the compressibility and the
with �2 defined in Eq. �26� and
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charge imbalance. We first discuss the simplest case of in-
compressible, symmetric mixtures, and then go on to inves-
tigate the effects of charge imbalance and compressibility.

A. Incompressible, symmetric mixtures

Our analysis of microphase separation is based on the
effective free energy �14� in the gel phase. We expand it
around �=0 up to fourth order, in the presence of a nonzero

gel order parameter �̄ given by Eq. �21�. The expansion
reads
n

N
Fn�
��� � 1

2 �
�1,2

�
k

�A�1,�2
�k��k

�1�−k
�2 + 1

8�
�

�
k1,2,3,4

� �k1+k2+k3+k4,0�g3�k1,k2�g3�k3,k4�
gD��k1 + k2�2�

−
g�4�k1,k2,k3�

3
	�k1

� �k2

� �k3

� �k4

� .

�43�
Here, A�1�2
�k� is given in Eqs. �23� and �24�, and the vertex

of the fourth-order term is given by the Wiener correlators

g3�k1,k2� = ��
0

1

ds1ds2ds3�e−i��=1
3 k�r�s���W�

k3=−k1−k2

�44�

and

g�4�k1,k2,k3�

= ��
0

1

ds1ds2ds3ds4�e−i��=1
4 k�r�s���W�

k4=−�
�=1
3 k�

. �45�

The fourth-order term in Eq. �43� apparently depends on
the spatial structure of the microphases, and is responsible
for the pattern selection as well as for the wave-number se-
lection in the microphase separated state. A particularly
simple pattern are lamellas with sinusoidal modulations in
real space:

�̄p
� = �0 for � = 0

�2��p,k + �p,−k�� otherwise.
� �46�

This ansatz is replica symmetric, apart from the zeroth rep-
lica, which reflects the preparation ensemble. The wave-
length 2� /k and the amplitude �
0 are variational param-
eters subject to optimization. Insertion into �43� yields

f�
��� ª
1

N
· lim

n→0
Fn�
��� � �2�k2� · �2 +

1

2
g4�k2� · �4,

�47�
g4�k2� ª
1

2
� �g3�k,k��2

gD�4k2�
+ 2�gD�k2��2 − g�4�k,k,− k�	

= 1 −
2

3
k2 + O�k4� �48�

�see Appendix B�.
At the onset of the microphases, the amplitude goes to

zero continuously, and the optimal wave number is given by
kc �see Eq. �30��, implying a domain size of the order of the
localization length of the gel. Beyond the critical point, the
amplitude is nonzero, and the wave number deviates from its
critical value kc. Both are obtained from a variational opti-
mization of the above free energy:

�min
2 �k� = −

�2�k�
g4�k2�

and kmin
2 − kc

2

= c0 · ��m − �crit� + O���m − �crit�2� . �49�

The constant c0 can be computed analytically only for a
weak gel, by further expansion in powers of �−1, which
yields c0�1.09��−1�. The optimal amplitude �min�kmin�
grows continuously with �m−�crit as follows:

�min
2 =

�m − �crit

�crit
2 g4�kc

2�
+ O���m − �crit�2� . �50�

Other simple structures, such as a hexagonal stack of
cylinders or a bcc crystal of spheres, have higher free ener-
gies. The same holds for a superposition of several sinusoidal
modulations like Eq. �46�, with the same wave numbers but
different directions. As we shall see below, these conclusions
depend on the symmetry of the mixture and its compressibil-
ity.

B. Effects of asymmetry

The most important effect of the asymmetry is a third-

order term in the Landau expansion, rendering both the mac-
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rophase separation of the uncross-linked liquid and the mi-
crophase separation of the gel first-order transitions.

To keep the discussion simple, we neglect deviations of
k2 from kc

2 and drop the k dependence of the higher-order
terms in the Landau free energy. With the ansatz �k

�= �1
−��,0��k, corresponding to the mixed state in the prepara-
tion ensemble and replica-symmetric phase separation in the
measurement ensemble, this leads to the free energy density

f�
���
1 − q2 = 1

2�
k

��2�k��k�−k

+
q

3 �
k1,2,3

� �k1
�k2

�k3
· �k1+k2+k3,0

+
q2

2 ��
k

� �k�−k	2

+
1 − 3q2

12 �
k1,2,3,4

� �k1
�k2

�k3
�k4

· �k1+k2+k3+k4,0,

�51�

with �2�k� defined in Eq. �26�.
Besides the lamellar microphases already discussed in

Sec. V, we now consider two additional morphologies: Cy-
lindrical phases having parallel orientation, aligned on a hon-
eycomb lattice in the perpendicular plane, and spherical do-
mains on a body centered cubic lattice. Although a randomly
cross-linked blend will probably reveal only local order, the
regular structures are useful for constructing a simple and

tractable ansatz for the microphase separated state:
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�p =
�

�m
�
i=1

m

��p,kni
+ �p,−kni

� �52�

with m=1 for lamellas, m=3 for hexagonally ordered cylin-
ders, and m=6 for spheres on a bcc lattice, and the corre-
sponding lattice vectors 
ni� being defined in Appendix A 1.

With the lattice ansatz �52�, the evaluation of the higher-
order sums in Eq. �51� amounts to counting the number of
possible “loops”of two, three, and four lattice vectors that
add to zero. This is carried out in Appendix A 1 a, yielding
�k� �k�−k=2�2, independent of the morphology, and also

�
k1,2,3

��k1
�k2

�k3
· �k1+k2+k3,0 = c3

�m��3, �53�

�
k1,2,3,4

��k1
�k2

�k3
�k4

· �k1+k2+k3+k4,0 = c4
�m��4, �54�

where

c3
�1� = 0, c3

�3� = 4/�3, c3
�6� = 4�2/3, �55�

c4
�1� = 6, c4

�3� = 10, c4
�6� = 15. �56�

Thus, the free-energy density becomes

f�
���
1 − q2 =

�m
−1 − �crit

−1

1 − q2 · �2 +
qc3

�m�

3
· �3

+ �2q2 +
�1 − 3q2�c4

�m�

12
	 · �4. �57�

Here, �2 has been evaluated at kc because �in this section� we
are not considering deviations of the wave number from its
critical value.

For m=1, the third-order term vanishes, even if q�0, so
the transition remains second order and the spinodal indeed
indicates the equilibrium phase transition point with respect
to lamellas. In contrast, for cylinders and bcc spheres the

equilibrium transition point �t is shifted according to
1

�1 − q2��t
−

1

�1 − q2��crit
=

�qc3
�m�/3�2

4�2q2 + �1 − 3q2�c4
�m�/12�

=
�qc3

�m��2

72q2 + 3�1 − 3q2�c4
�m�

= �
8q2

45 − 27q2 =
24

135
q2 + O�q4� for m = 3 �cylinders�

32q2

135 − 189q2 =
32

135
q2 + O�q4� for m = 6 �bcc spheres� .� �58�
In the asymmetric case, the bcc spheres yield the lowest
equilibrium transition point of the three possibilities consid-
ered, i.e., microphases first occur with bcc symmetry. This is
to be expected, as the ratio of surface to volume of the mi-
nority phases is minimal for spheres embedded in the major-
ity phase, and is in agreement with the finding of Alexander
and McTague13 of a general preference for bcc symmetry in
crystal nucleation. Note, however, that the Landau expansion
is only valid for small q2, for which the transition is weakly
first order. In particular, for q2=5/7, where the right hand
side in the last line of Eq. �58� diverges, the Landau expan-
sion breaks down.
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C. Effects of compressibility

A compressible system can avoid unfavorable A-B con-
tacts and lower its energy by diluting mixed regions having
many such contacts, which are characterized by a small ab-
solute charge density, and condensing regions that are rich in
either A or B, which have a high absolute charge density.
Mathematically, this becomes apparent via a nonzero value
of the saddle point of the density 	̄ in a phase separated state.
For simplicity, we restrict the discussion of compressibility
effects to the symmetric case, where the shifted and the
original density fields coincide. In this case, the saddle point
of 	 is given by

	̄k
� =

i

2�1/�̃� + gD�k2��
�
k1,2

��k1

� �k2

� · �k+k1+k2,0. �59�

For the simple example of lamellar microphases described
by a single wave vector k as in Eq. �46�, Eq. �59� predicts
density-field modulations having wave vector k1= ±2k, i.e.,
with twice the wave number of the charge-density modula-
tions. This is intuitively clear: Along one spatial period of the
charge-density modulations, their modulus or square, and
thus the mass density, oscillates twice, corresponding to the
half-wavelength or the double wave number; this is illus-
trated in Fig. 8.

The compressibility is controlled by the strength of the

excluded volume interaction, i.e., the parameter �̃=�m

−� /Vn. To study microphase separation in the symmetric but
compressible case, we integrate out the density field, keeping

� finite. With the ansatz ��= �1−��,0��, we obtain

f��� =
1

2�
k

��2�k��k�−k +
1

8�eff
��

k

��k�−k	2

+
1

12
�1 −

3

2�eff
	 �

k1,2,3,4

� �k1
�k2

�k3
�k4

�k1+k2+k3+k4,0.

�60�

Here, �eff=�−�+1, and we have dropped the k dependence
in the higher-order vertices, thereby restricting the domain
size to its critical value, determined by kc or the localization
length of the gel.

To account for the potential randomness of the mi-
crophase pattern, we extend the previous lamellar ansatz by
allowing a superposition of Z one-dimensional waves, each
with identical wave number kc but random phases �z and

FIG. 8. Coupling of mass �	� and charge ��� densities. Zones of large
charge-density modulation are condensed, hence the mass density is modu-
lated with half the wavelength of the charge-density modulations.
wave-vector orientations nz, i.e.,
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�k =
�

�Z
�
z=1

Z

�ei�z�k,−kcnz
+ ei�z�k,kcnz

� , �61�

corresponding to 2� / �VZ1/2� ·�z=1
Z cos�kcnzx+�z� in real

space. The optimal number of orientations will be deter-
mined later. A few examples of such random morphologies
are shown in Fig. 9, the number of phases ranging from 1 to
100.

We assume that none of the orientations nz are collinear,
and thus the quadratic sums in Eq. �60� yield

�
k

��2�kc��k�−k = 2�2�kc��2 and �
k

��k�−k = 2�2.

�62�

To compute the fourth-order sum in Eq. �60�, we have to
count the number of possible closed loops of orientations.
Because of the randomness, the existence of quadruples of
orientations able to form a closed loop is very unlikely, ex-
cept for the degenerate planar case of pairs of opposite vec-
tors �±nz , ±nz��, and hence we disregard nonplanar loops.
Single orientations allow for the construction of quadruples
�nz ,nz ,−nz ,−nz� that can be ordered in � 4

2
�=6 ways. Qua-

druples �±nz , ±nz�� of two pairs of different orientations can
be ordered in 4!=24 different ways, and there are 1

2Z�Z−1�
such pairs. Thus, the quartic sum in Eq. �60� yields

�
k1,2,3,4

� �k1
�k2

�k3
�k4

· �k1+k2+k3+k4,0

=
12Z�Z − 1� + 6Z

Z2 �4 = 12�1 −
1

2Z
	�4. �63�

Inserting the sums into the free-energy density we obtain

f��� = �2�k��2 + ��1 −
1

�eff
	 − �1 −

3

2�eff
	 1

2Z
	�4.

�64�

The fourth-order term depends on �eff and the number of
components Z. It has to be positive to guarantee stability, and
this requires �eff�1. The sign of the O�Z−1� term determines
the optimal number of random orientations. For low com-
pressibilities, i.e., for �eff�3/2, the term is negative and the
free energy grows with an increasing number of orientations,
hence the simple lamellar morphology is favored. For a
rather compressible system having, in contrast, 1��eff

�3/2, the effective free energy decreases with increasing Z,
favoring an “infinite” number of orientations and hence a

FIG. 9. Superposition of lamellæ having random orientations in real space
in two dimensions. The pictures show an area of 10�10 wavelengths, and
the local amplitude is indicated by the grey scale in arbitrary units for Z
=1, 5, 10, and 100 orientations.
random pattern.
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D. Fluctuations about the microphase separated state

In this section we address the Gaussian fluctuations
about the microphase separated state. Concentrating on the
case of an incompressible symmetric gel, we decompose the
replicated charge density field

�p
� = �̄p

� + �p
�, �65�

i.e., into the saddle point value �̄p
� �lamellas� given by Eq.

�46� and the fluctuations �p
� about this state. Like in the

homogeneous case, the thermal fluctuations and persistent
correlations of the physical charge density are given by the
replica-diagonal and off-diagonal correlations ��p

��−p
� � and

��p
��−p

� �, respectively �see Sec. IV E�. To compute these
quantities on the Gaussian level, we require the second-order
expansion of the effective free energy in terms of �. Inser-
tion of Eq. �65� into Eq. �43� yields

n

N
Fn�
��� � 1

2 �
�1,2

�
p

�A�1�2
�p��p

�1�−p
�2

+ �2 . �
��0

�
p1,2

�B�k,p1,p2��p1

� �p2

� , �66�

where A�1,�2
denotes the matrix defined in Eq. �23� describ-

ing the stability of and the fluctuations in the homogeneous
gel ��m��crit�; � and k denote the saddle point amplitude
and wave vector of the lamellar microphases, respectively.
The coefficient B�k ,p1 ,p2� of the second term originates
from the coupling of the fluctuations to the underlying lamel-
lar pattern; the details of the free-energy expansion are given
in Appendix D.

Besides a part diagonal in momentum space �p1+p2

=0�, the second term of Eq. �66� also includes off-diagonal
terms with p1+p2= ±2k, which can be treated perturbatively.
Due to momentum conservation in the desired correlators,
the off-diagonal terms do not contribute to lowest order in
perturbation theory. In the vicinity of the microphase transi-
tion we find in leading order

n

N
Fn�
��� � 1

2 �
�1,2

�
p

�Ã�1�2
�p��p

�1�−p
�2 + O��4� �67�

with

Ã�1�2
�p� = A�1�2

�p� + ��1,�2
�1 − ��1,0� · 2�2

��gD�k2�gD�p2� f+
2�g3�k,p��2

gD��k + p�2�
− g�4�k,− k,p�	;

�68�

here we have used the detailed form of B�k ,p1 ,p2� given in
Appendix D. In weakly cross-linked gels the dominant wave
numbers p�kc are small, so the term in the large brackets in

Eq. �68� can be expanded about k ,p=0, which leads to
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gD�k2�gD�p2� +
2�g3�k,p��2

gD��k + p�2�
− g�4�k,− k,p�

� 2 −
2

3
�k2 + p2� + . . . . �69�

In this approximation, the angle between p and k no longer
appears and the Gaussian persistent and thermal fluctuations
are given by Eqs. �32�–�34�, with �2 replaced by the corre-

sponding eigenvalue of the matrix Ã:

�̃2�p� � �2�p� + 4�2�1 −
1

3
�k2 + p2�	

� �2�p� −
4�2�kc�
g4�kc

2�
�1 −

1

3
�kc

2 + p2�	 . �70�

In the last step, we have inserted the saddle point values for
the wave number and amplitude of the lamellas, k�kc and
�=�min.

Both numerical analysis and estimations show that �̃2 is
positive, i.e., the lamellar state is stable against fluctuations.
Hence the Gaussian fluctuations do not destroy the lamellar
microstructure.

Figure 10 shows an example of the persistent and ther-
mal correlation functions of a gel prepared relatively close to
demixing, measured at different distances to the microphase
transition. Close to the transition, the correlation functions
are strongly peaked near p=kc. On raising ��m−�crit�, both
correlation functions become smaller. Whereas the thermal
fluctuations remain peaked at p�kc, the persistent correla-
tions are increasingly dominated by the frozen-in fluctuations
that decay with p.

VI. CONCLUSIONS

In this paper we have analyzed a microscopic model of
cross-linked polymer blends, built on the Edwards model for
a polymer melt and generalized to two components, which
are mutually incompatible. Random cross-links are intro-
duced according to the Deam-Edwards distribution, also gen-
eralized to include concentration fluctuations at the instant of
cross-linking. Thereby, the concentration fluctuations in the

FIG. 10. Fluctuations about the microphase separated state: Sgl�p� and
Svar�p� �different scales� for �=1.01, �p=0.998, and �m /�crit=1.001, 1.0015,
1.002, and 1.003 �from top to bottom�.
melt are partially frozen in and sustained in the gel phase.
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Apart from these correlations, which are present at prepara-
tion, the cross-links are taken to connect monomers irrespec-
tive of their charge. Hence, within the mean-field theory, the
resulting gel is identical to the one made from just one spe-
cies of polymer. However, concentration fluctuations are
present and have been computed on the Gaussian level of
approximation. Of particular interest are the frozen-in or
glassy fluctuations, which reflect the preparation state. In
general, the network can only quench fluctuations on length
scales larger than its own mesh size, which is roughly given
by the localization length of the mean-field theory. If the
preparation ensemble is close to macroscopic phase separa-
tion, then the length scale of these fluctuations is large com-
pared to the mesh size, so that the glassy fluctuations are
given by the concentration fluctuations in the preparation
state. If, on the other hand, the preparation state is far from
phase separation, the frozen-in charge fluctuations follow the
network pattern, and hence are completely random, because
the cross-links are not sensitive to the species. The thermal
concentration fluctuations are independent of the preparation
state.

Lowering the temperature in the gel, or equivalently in-
creasing the incompatibility of the two species, gives rise to
phase separation, the spatial extent of which is limited by the
mesh size of the network. The length scale of the resulting
“microphases” can thus range from almost microscopic to
nearly macroscopic scales, depending on the degree of cross-
linking of the gel. The instability towards microphase sepa-
ration is signaled by a divergence of the time-persistent as
well as thermal fluctuations. The emergent microstructure is
shown to depend sensitively on charge imbalance and com-
pressibility. The latter allows for random patterns with a
unique wavelength, i.e., the localization length, whereas in
the incompressible system lamellas are favorable for bal-
anced mixtures and hexagonal patterns for imbalancd mix-
tures.

We now compare our results to previous phenomeno-
logical approaches, many of which have focused on the issue
of microphase separation. de Gennes argued that the charges
in the cross-linked gel cannot move freely, but are displaced
in analogy to the charges in a dielectric material. He intro-
duced a polarization P which, as in electrostatics, is deter-
mined by the charges according to � ·P=−�. In the limit of
weak segregation, the free energy is quadratic in the polar-
ization, and is simply added to the free energy of charge
fluctuations, resulting in

f�
��� = 1
2�

k

���crit − �m + k2 +
C

k2	�k�−k, �71�

where C is a coefficient of “internal rigidity.” The above free
energy leads to an instability at finite wave number �mi-
crophase separation�, but predicts that limk→0 Ssc�k�=0, in
disagreement with experiment. The nonzero scattering inten-
sity at zero wave number is due to the frozen-in charge fluc-
tuations present at preparation. To account for these fluctua-
tions, Benmouna et al.6 refined the analogy to a dielectric by
including a Debye-Hückel screening of the “charges,” which

permits long-range inhomogeneities leading to a nonvanish-
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ing zero-angle scattering. The screening length � is deter-
mined self-consistently, by assuming that the scattering in-
tensity at k=0 is not affected by the cross-linking as long as
the temperature remains unchanged after preparation.14 The
free energy in the quadratic approximation then reads:

f�
��� = 1
2�

k

���crit − �m + k2 +
C

k2 + �2	�k�−k. �72�

This expression can be compared with Eq. �51� in the qua-
dratic approximation as follows:

f�
��� = 1
2�

k

�� 1

�m
− gD�k2�

+ ��� − 1���k2�� − 1��	�k�−k �73�

� 1
2�

k

��1 − �m + k2�m

3

+ ��� − 1���k2�� − 1��	�k�−k. �74�

In the last line, we have expanded the Debye function for
small wave number. We see that the microscopic model in-
deed agrees with phenomenological theories, provided we
identify the phenomenological terms with the order param-
eter of the gel. The wave-number dependence of the order
parameter is not Lorentzian; nevertheless, it decays mono-
tonically with k, the relevant length scale being given by the
localization length. Hence, the somewhat mysterious screen-
ing length is unambiguously identified with the localization
length, which is computed self-consistently. Thereby, the mi-
croscopic model substantiates the picture of de Gennes and,
furthermore, allows the computation of the parameters and
functions that are beyond the phenomenological approach.

The frozen-in fluctuations were first addressed by Read
et al.,7 who considered a blend of polymer chains anchored
at both ends to randomly chosen fixed points in space, in
order to account approximately for the localization of chains
due to the cross-links. Read et al. make reasonable but ad
hoc assumptions about the distribution of the quenched ran-
dom end-to-end vectors, and solve the resulting model within
the random phase approximation. They obtain a scattering
function that exhibits a nonzero value at k=0, due to the
random, quenched fluctuations. In addition they compute the
thermal, as well as the glassy, charge fluctuations as follows:

Svar�k� =
1

�crit − � + k2 + �C/k2�
and �75�

Sgl�k� =
�C/k2�2�	0�k��2

2 2 2 ;

��crit − � + k + �C/k ��
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where 	0�k� is the frozen-in concentration. The above results
are in close correspondence to the results of our analysis,
presented in Eqs. �32� and �34� and evaluated in the limit of
small wave number as follow:

Svar�k� �
1

1 − �m + k2��m/3� + �m�� − 1���k2/�� − 1��
,

Sgl�k� �
�� − 1�w�k2/�� − 1��

�1 − �m + k2��m/3� + �m�� − 1�w�k2/�� − 1���2 .

Both approaches, the phenomenological one and the micro-
scopic model, predict a divergence as microphase separation
is approached, with the glassy correlations diverging twice as
strongly as the thermal ones.

The work reported in the present paper can be extended
in several directions. First, we have worked only on the level
of mean-field and Gaussian fluctuations. It is known that the
microphase separation transition in the symmetric case is
rendered first order by fluctuations,15 and hence it would be
interesting to see the effect of fluctuations, even though the
critical region is expected to be small.16 Another extension is
a cross-link probability that depends on the species. This
would allow us to study, among other things, interpenetrating
networks. Finally, it would be interesting to look at the dy-
namics of microphase separation.

ACKNOWLEDGMENTS

We thank Xiangjun Xing for enlightening discussions.
This work was supported in part by the Deutsche
Forschungsgemeinschaft through SFB 602 �AZ, CW�, Grant
No. Zi 209/6-1 �AZ�, and GRK 782 �CW�, and by the U.S.
National Science Foundation through Grant No. NSF
DMR02-05858, and the U.S. Department of Energy through
Grant No. DEFG02-91ER45439 �PMG�.

APPENDIX A: MICROPHASE MORPHOLOGY

To investigate microphase transition, we assume that the
phase separation pattern can be described by a first-harmonic
ansatz having a dominant wave number k and a definite lat-
tice structure as follows:

�k� = �
V

�2m
�
i=1

m

��k�,+kni
+ �k�,−kni

� , �A1�

with lattice vectors ni�Gª 
ni � i=1, . . . ,m� and an ampli-
tude �.

1. Lattice structures

We consider three particular morphologies, which are
known to occur in the microphase separation of regular co-
polymer melts:17,18

�i� Lamellas �m=1�: Alternating sheets rich in A and B;
one-dimensional order. Lattice vector: n1= �1,0 ,0�T.

�ii� Cylinders �m=3�: Close-packed, i.e., hexagonally ar-
ranged, cylindrical domains, A in B or vice versa;
two-dimensional order. Lattice vectors: n1= �1,0 ,0�T,

� T � T
n2= �−1/2 , 3 /2 ,0� , and n3= �−1/2 ,− 3/2 ,0� .
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�iii� bcc spheres �m=6�: Spherical A-rich domains in B, or
vice versa, on a bcc lattice in real space; three-
dimensional order. Lattice vectors of the correspond-
ing fcc lattice in Fourier space: n1= �1,1 ,0�T /�2, n2

= �0,1 ,1�T /�2, n3= �1,0 ,1�T /�2, n4= �1,0 ,−1�T /�2,
n5= �−1,1 ,0�T /�2, and n6= �0,−1,1�T /�2.

Note that a�GÞ−a�G; therefore we introduce the sym-
metrized set of lattice vectors, G+

ª 
n �n�GÚ−n�G�. For
m�1, the set G of lattice vectors is not minimal in the sense
of linear independence: for any two vectors a�b�G, the
difference a−b is included in G+. Rather, the vectors are
chosen such that the ki�G+ point towards the directions of
all nearest-neighbor lattice sites.

a. Wave-vector sums

Inserting the ansatz �A1� into the expansion of the Lan-
dau free energy of the random copolymer melt or the cross-
linked homopolymer blend yields sums of the type

�
k1,. . .p

� f2�k1, . . . ,kp−1��k1
¯ �kp

��
�=1
p k�,0

=
�p · Vp

�2m�p/2 �
k1,. . .,p

� f2�k1, . . . ,kp−1�

�

�=1

p ��
�=1

m

��k�,+kn�
+ �k�,−kn�

�	��
��=1
p k��,0

= �p ·
Vp

�2m�p/2 �
k1,. . .,p�G+

f2�k1, . . . ,kp−1��k1+¯+kp,0. �A2�

In the quadratic sum the vertex function can be factored out,
so that

1

V2�
k

f�k�2��k��−k� = �2 ·
f�k2�
2m

�
k1,2�G+

�k1+k2,0

= �2 · f�k2� . �A3�

The higher-order sums, however, strongly depend on the
morphology of the microphases. In the simplest case,
f�k1 , . . . �=1, the computation of these loops amounts to
counting the number of closed loops that can be constructed
with the vectors in G+. In general, the loops must also be
classified with respect to their shape, i.e., planar or nonpla-
nar, as distinct shapes yield distinct values of the vertex func-
tions. The counting and classification have been done, e.g, in
Ref. 18, with the results shown in Table I. For f�k , . . . �=1,
the third- and fourth-order sums are given by

1

V3 �
k1,2

�k1
�k2

�−k1−k2

= �3 · �0 for m = 1 �lamellas�
�2/3 for m = 3 �cylinders�

2/�3 for m = 6 �bcc spheres�
� �A4�
and
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1

V4 �
k1,2,3

�k1
�k2

�k3
�−k1−k2−k3

= �4 · �3/2 for m = 1 �lamellas�
5/2 for m = 3 �cylinders�
15/4 for m = 6 �bcc spheres�

� . �A5�

APPENDIX B: VERTEX FUNCTIONS

In the following, we define and compute the vertex func-
tions appearing in the Landau expansion of the effective free
energy, which are integrals over Wiener correlators of the
type

�exp�− i�
�=1

z

k̂� · r̂�s����
n

W

= ��
�=1
s k̂�,0 exp� 1

2 �
�,��

�s� − s���k̂� · k̂���; �B1�

a derivation of Eq. �B1� can be found in Ref. 12. The cor-
relator vanishes unless the wave vectors sum to zero in each
replica. If just single-replica quantities are involved, the cor-
relator factorizes,

�exp�− i �
�1=1

z1

k�1
· r�1�s�1

� − ¯ − i �
�m=1

zm

k�m
· r�m�s�m

���
n

W

=�exp�− i �
�1=1

z1

k�1
· r�s�1

���W

¯�exp�− i �
�m=1

zm

k�m
r�s�m

���W

, �B2�

for pairwise distinct �1 , . . . ,�m, where �¯�W denotes the un-
replicated Wiener average.

1. Definition of the vertex functions

The second-order coefficients of the Landau expansion

TABLE I. Number of closed loops of p lattice vectors �“p loops”� for
different morphologies. The 4-loops are divided into intra- and extra-planar
loops.

Loop type Lamellas Cylinders bcc spheres

2-loop 2 6 12
3-loop 0 12 48
4-loop Planar 6 90 396

Nonplanar ¯ ¯ 144
Total 6 90 540
are governed by the Debye function
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gD�k2� ª �
0

1

ds1ds2�e−ik�r�s1�−r�s2���W

= �
0

1

ds1ds2�e−ik̂�r̂�s1�−r̂�s2���n
W

=
e−k2

− 1 + k2

k4/2

= 1 −
1

3
k2 +

1

12
k4 + O�k6� , �B3�

the scattering function for a noninteracting Gaussian chain.
The third-order correlators,

g3�k1,k2� ª �
0

1

ds1ds2ds3��e−��=1
3 k�r�s���W�k3=−k1−k2

= �
0

1

ds1ds2ds3��e−i��=1
3 k̂�r̂�s���W�k̂3=−k̂1−k̂2

�B4�

and

g�2��k1,k2� ª �
0

1

ds1ds2ds3�e−ik1�r�s1�−r�s3���W

��e−ik2�r�s2�−r�s3���W

= �
0

1

ds1ds2ds3

���e−ik1r�1�s1�−�k2r�2�s2�−ik̂r̂�s3���n
W�

�1��2

k̂=−k1�e�1
−k2�e�2

,

�B5�

FIG. 11. Scaling function ��x� vs x: Asymptotic expressions and interpo-

lated function.
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describe the correlation between three one-replica fields and
the correlation between two one-replica fields and a higher-
order replica field, respectively.

Finally, the fourth-order correlator is given by

g�4�k1,k2,k3� = �
0

1

ds1ds2ds3ds4��e−l��=1
4 k�r�s���W�k4=−�

�=1
3 k�

.

�B6�

a. Lamellar case

The third- and fourth-order correlators depend on the
directions of the wave vectors. In particular, we require the
“lamellar” case, in which all wave vectors are collinear. We
note that g �k ,−k�=g �k2�, and define
3 D
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g3�k2� ª g3�k,k�

=
− �e−4k2

− 1 + 4k2 − 8k4� + 64�ek2
− 1 + k2 − 1

2k4�
12k6

+
2�e−k2

− 1 + k2�
k4

= 1 − k2 +
3

4
k4 + O�k6� , �B7�

g�2��k2� ª g�2��k,− k�

=
− e−2k2

+ �8 + 2k2�e−k2
+ 4k2 − 7

k6

= 1 −
2

3
k2 +

17

60
k4 + O�k6� , �B8�

and
g�4�k2� ª g�4�k,k,− k�

=
144k4 − 60k2�9 + 4e−k2

� + 784�1 − e−k2
� − �1 − e−4k2

�
18k8 = 1 −

2

3
k2 +

11

30
k4 + O�k4� . �B9�
APPENDIX C: SCALING FUNCTION FOR THE
GELATION ORDER PARAMETER

The localization lengths � of monomers in the gel frac-
tion of a cross-linked homopolymer melt or blend are distrib-
uted according to the distribution p���; see Sec. IV B. The
fraction of the gel and the distribution are determined from
the self-consistent solution of the saddle point equations with
the order parameter hypothesis �20�. The gelation order pa-
rameter, essentially the Laplace transform of p���, is propor-
tional to a scaling function ��x�, which is computed in Ref.
12 in the asymptotic regimes of small and large x. For con-
venience, we define a rescaled version of �,
w�k2� ª 2 · ���8k2/3� . �C1�

This also absorbs a factor of 2 arising from the different
length scales used in Ref. 12 �the Wiener Hamiltonian used
therein differs by a factor of 2�.

1. Interpolation formula

The scaling function ��k� defined in Ref. 12 can be de-
scribed asymptotically by
��x� � ��1�x� ª 1 − 0.4409x2 + 0.1316x4 for x � 1,

�2�x� ª 3� �2x6

8 · 1.678
	1/4

e−�2·1.678x � �1 +
27

40�2 · 1.678x
	 for x � 1, � �C2�
and is shown in Fig. 11. In order to access the whole range of
0�x�� we interpolate between the asymptotic regimes us-
ing the interpolation formula
��x� � ��1�x� for x �
1
2 ,

�ip�x� for 1
2 � x � 2,

�2�x� for x 
 2,
� �C3�
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with the interpolating rational function

�ip ª
b0 + b1x

1 + a1x + a2x2 + a3x3 . �C4�

The coefficients a1=−0.055, a2=0.165, a3=0.139, b0

=1.023, and b1=−0.194 are chosen such that the value and
first derivative of � �x� coincide with those of � �x� at
ip 1

Downloaded 09 Aug 2006 to 130.126.32.13. Redistribution subject to
x=1/2 and with those of �2�x� at x=2; an additional sam-
pling point is the numerical value ��x=1�=0.664.

APPENDIX D: FREE ENERGY OF THE FLUCTUATIONS
ABOUT THE LAMELLAR STATE

In Sec. V we compute the Gaussian fluctuations about
the lamellar state of a symmetric, incompressible gel. This
requires the quadratic expansion of the effective free energy,
which is indicated in Eq. �66� in a compact form. In full
detail the expansion reads
n

N
Fn�
��� � 1

2 �
�1,2

�
p

�A�1�2
�p��p

�1�−p
�2 + �2 · �

��0
�

p

��gD�k2�gD�p2� +
2�g3�k,p��2

gD��k + p�2�
− g�4�k,− k,p�	�p

��−p
�

+ 1
2�2 · �

��0
�
p1,2

� �p1+p2+2k,0�g3�k,k�g3�p1,p2�
gD�4k2�

+
2g3�k,p1�g3�k,p2�

gD��k + p1�2�
− g�4�k,k,p1�	�p1

� �p2

�

+ 1
2�2 · �

��0
�
p1,2

� �p1+p2−2k,0�g3�k,k�g3�p1,p2�
gD�4k2�

+
2g3�k,− p1�g3�k,− p2�

gD��k − p1�2�
− g�4�k,k,− p1�	�p1

� ,�p2

� , �D1�
with A�1,�2
�p� denoting the quadratic vertex function of the

homogeneous gel defined in Eq. �23� and with the saddle
point amplitude � and wave vector k of the lamellar mi-
crophases.
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