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Photons in multimode optical cavities can be used to mediate tailored
interactions between atoms confined in the cavities. For atoms possessing
multiple internal (i.e., ‘‘spin’’) states, the spin–spin interactions mediated by
the cavity are analogous in structure to the Ruderman–Kittel–Kasuya–
Yosida (RKKY) interaction between localized spins in metals. Thus, in
particular, it is possible to use atoms in cavities to realize models of
frustrated and/or disordered spin systems, including models that can be
mapped on to the Hopfield network model and related models of
associative memory. We explain how this realization of models of
associative memory comes about and discuss ways in which the properties
of these models can be probed in a cavity-based setting.
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1. Introductory remarks

Since the development of laser cooling and trapping, a range of phenomena that
are traditionally associated with the physics of condensed matter have been realized
and explored in ultracold atomic settings [1]. Such realizations differ from
their traditional condensed-matter counterparts in their exquisite controllability
and tunability: ultracold atomic systems are, as a rule, isolated from the environment
and governed by precisely understood microscopic Hamiltonians, in which many of
the parameters (including, e.g., interaction strengths) are determined by quantities
such as laser intensities, which are readily altered in the course of an experiment. In
addition, the ultracold settings offer probes that in the condensed-matter realm
either have no parallel or require extraordinary sophistication [2]. For instance, it is
possible to image [3,4] and even manipulate [5] ultracold atomic systems at the
single-atom level. Because of these features, experiments with ultracold atoms
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offer a promising setting in which to investigate open questions in many-body

physics.
The ubiquity of magnetism and the multitude of puzzles involving it have made

realizing models of magnetism a central objective in ultracold atomic physics.

Models of magnetism, such as the Heisenberg model, are believed to describe aspects

of the phase diagrams of strongly correlated condensed-matter systems such as

transition metal oxides; the models are, however, simplified descriptions, excluding

potentially important degrees of freedom such as phonons. Experiments with

ultracold atoms offer the prospect of realizing the theoretically studied models much

more precisely; as many of the models are neither exactly solvable nor (owing to

‘‘sign problems’’) straightforward to study numerically, it is hoped that such

experiments (or ‘‘quantum emulations’’) will shed light on their properties [1].
Perhaps the central effort to realize magnetic ordering, to date, has focused on

the fermionic Hubbard model. In this model, the mechanism causing magnetism is

antiferromagnetic exchange (often termed ‘‘superexchange’’) amongst the localized

electrons on neighboring lattice sites; however, the temperature scale associated with

superexchange is too low to be readily achievable in current experiments [1]. It is

therefore desirable to investigate alternative, less direct schemes for exploring

magnetism, e.g., by exploiting the analogy between the phase of a Bose–Einstein

condensate and the orientation of a planar spin [6], or that between an Ising spin

system and a binary fluid [7]. In recent work [8], we introduced an alternative

approach, involving atoms having two or more low-lying energy levels that represent

the spin states; inter-spin interactions are mediated via virtual photonic excitations of

a multimode optical cavity. The central difference between our approach and

previous ones lies in the range and structure of interactions: rather than being

nearest-neighbor and always of the same sign, the cavity-mediated interactions are

longer-ranged (indeed, they are infinite-ranged in the case of a single-mode cavity)

and have alternating signs, depending on the positions of the spins within the cavity.

Thus, the approach discussed in this work is particularly well-suited for studying

(a) disordered and/or frustrated spin systems, and (b) spin systems having long-range

interactions.
In Ref. [8], we considered a specific atomic configuration that was shown to

realize Cook’s generalization to the planar-spin case [9] of the Hopfield

neural-network model [10]. The correspondence between the atom–cavity system

and the neural-network models was then used to deduce the phase diagram of the

former. In particular, we estimated the maximum ratio of the number of cavity

modes to the number of spins for which the ground state of the system is a

conventionally ordered state that encodes an associative memory; for smaller (larger)

numbers of spins (modes), the ground state is expected to be a spin glass [11]. In the

present work we take a more general perspective regarding the microscopic degrees

of freedom, and address the low-temperature phases, especially the

memory-encoding phase, in greater detail. We discuss the origins of frustration in

a simple two-cavity-mode model that is related to the van Hemmen model of spins

with frustrated interactions [12,13]. We then consider the experimentally accessible

channels through which the properties of Hopfield-type models can be investigated

in the cavity-based setting.
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2. Model and general properties

The general atom–cavity setup involves atoms possessing a ground-state manifold of

m low-lying ‘‘spin’’ states (separated from one another by microwave transitions) as

well as some number of excited states (separated from the ground-state manifold by
much larger, optical transitions). A concrete example, involving a three-level

(so-called) � atom, is shown in Figure 1a and analyzed in Ref. [8]. The optical

transitions are approximately resonant either with pump lasers or with cavity modes;

the principle behind the dressing of the atoms with laser and cavity fields is that there
should exist nearly resonant processes whereby a photon is scattered from the laser

to a cavity mode approximately degenerate with the laser, and the atom simulta-

neously changes its spin state (i.e., two-photon resonances). In other words, the

laser–cavity frequency difference should be close to the spin-state spacings but
slightly detuned (by an amount we call �) below them. Under these conditions, if one

ignores dissipative processes, the physical basis for spin–spin interactions can be

understood as follows: an atom i can scatter a photon between the laser mode and a

cavity mode; in the process, it changes its spin state. The cavity photon, being virtual,

must be reabsorbed into the laser on a time-scale� 1/�; this process involves
changing the spin state of some atom j, which is in general distinct from atom i.

Thus, the process generates an effective spin–spin interaction (generally anisotropic

in spin-space) of the form ��1Mðxi, xj Þ
P

� A
�S�i S

�
j between pairs of atoms. Here, xi

is the position of the ith atom; M is a matrix element that depends on the cavity
mode profiles; A� encodes the anisotropy of the spin–spin interaction; and S�i

Pump laser

Trapping 
lasers

(b)(a)

h

ωC
ωL

δ

Excited

Down

Up

Figure 1. (Color online). (a) A possible atomic level structure for realizing associative memory
models with XY spins (see Ref. [8]). The detuning from two-photon resonance � is assumed to
be much smaller than the detuning of both laser and cavity frequencies (!L and !C

respectively) from the atomic transitions. The microwave transition connecting the two spin
states can be driven directly; such driving would correspond to the application of a magnetic
field h. (b) Experimental setup. Atoms tightly trapped at fixed, random positions by the
trapping lasers are pumped by a laser transverse to the cavity axis. The spins are ordered
according to one of the patterns (i.e., a cavity mode profile, indicated by the wavy line) stored
in the associative memory. Spins at even antinodes interact ferromagnetically with spins at
other even antinodes, but antiferromagnetically with spins at odd antinodes. The interactions
are strongest (weakest) for atoms locates at antinodes (nodes); thus the spins of the atoms at
the antinodes are more strongly organized, as depicted.
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denotes (in general) the �th component of the spin vector at site i. We assume that all

atoms are tightly confined near fixed random positions by external trapping lasers;

disorder in these positions can be achieved via the use of a diffuser, as in Ref. [14].
In the argument above, we have neglected the leakage of photons out of the

cavity; this neglect can be justified as long as the average photon leakage rate � is

much less than the detuning �, which sets the rate at which cavity photons are

reabsorbed into the laser. However, the presence of dissipation, and the consequent

flux of energy through the system, imply that the atom–cavity system is in general

not in equilibrium. This raises the question of whether equilibrium statistical

mechanics is applicable to such systems at all. We have addressed this question in

previous work [15,16], and found that (provided �� �) the primary effect of

dissipative processes is to set a lifetime � / 1/� for the experiment. In particular,

when the temperature T is zero, one can show explicitly [16] that adiabatic switching

[17] holds to a good approximation on time-scales shorter than �, and thus that the

ground state of a system of uncoupled spins evolves into the ground state of the

interacting system; hence, equilibrium statistical mechanics is expected to describe

the system reliably in this regime.
Following the arguments given in the first paragraph of this section, the general

spin Hamiltonian Hmm for a collection of atoms in a multimode cavity is of the

following form:

Hmm ¼ ��
X

�,i 6¼j,�

��ðxiÞ��ðxj ÞA
�S�i S

�
j þ � � � , ð1Þ

where �� (�2g2)/(D2�) is an effective coupling parameter in which �2 is the laser

intensity; g is the atom–cavity coupling strength, which is assumed to be the same for

all modes in some quasi-degenerate family indexed by �; and �� is the normalized

mode function of mode �. (For the specific setup treated in Ref. [8], the spins are

planar and their interactions are isotropic.) A particularly appealing feature of the

cavity QED realization is that the spin–spin interaction strength can be tuned, even

very rapidly, during the course of an experiment, by altering the laser intensity.
The ellipses in Equation (1) represent terms that do not involve the pump laser;

these terms can typically be either compensated for via redefinitions or neglected to

leading order [16]. Of these, the leading term is of the form ð g2=DÞ
P

�,i ��ðxiÞ
2Sz

i ,

which acts as an effective magnetic field (and stems from the shift in the cavity

resonance frequency because of the presence of atoms in the cavity); one can cancel

out this field via an appropriate choice of the atomic level spacing and microwave

driving frequencies. The next-to-leading term, on the other hand, can generate

spin–spin interactions, and takes the following form:

H2 �
g4

D2�

X

� 6¼�,i6¼j

��ðxiÞ��ðxj Þ��ðxj Þ��ðxiÞS
z
i S

z
j

þ ð�$ �Þ: ð2Þ

Thus, this term generates an Ising-type spin–spin interaction, which could in

principle compete with the term in Equation (1). For typical cavities, one expects this

term to be smaller by a few orders of magnitude than the laser-mediated coupling;
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however, in the limit of very strong atom–cavity coupling, this competition is
expected to modify the physics discussed in Ref. [8] and in the present work.

As cavity modes are generically oscillatory in all directions, the probability
distribution of the values of ��(xi) for randomly located positions xi is generically
peaked at �1 (see, e.g., Ref. [18]). We shall thus approximate the mode functions
as �1, as in the neural-network models; in this approximation,Hmm has the structure
of a Hopfield neural-network model [10,11].

The Hopfield model [10] and its generalizations [9,19] are stylized descriptions of
neural networks that encode associative memories. Such networks consist of N
neurons that collectively store p patterns; each stored pattern is a configuration of
neurons (with each neuron being ‘‘on’’ or ‘‘off’’ in the Hopfield model). The model is
said to store a memory if, starting from any configuration sufficiently like one of the
stored patterns, the zero-temperature dynamics invariably drives the system to the
relevant stored pattern. In terms of a spin system, the number of patterns stored in
the associative memory is the multiplicity of its local free-energy minima, or
(at T¼ 0) of its (non-symmetry-related) ground states. The system’s success at
retrieving patterns depends on whether, and how rapidly, it is able to approach these
minima. For p¼ 1, it can be seen that the interactions are unfrustrated; thus the
ground state is unique up to symmetry: it has the spins of all the atoms at even
antinodes of the solitary cavity mode pointing in some direction, and all the spins of
atoms at the odd antinodes pointing in the opposite direction (see Figure 1b). On the
other hand, for p�N, the spin–spin interactions become pairwise uncorrelated, so
that Equation (1) describes the Sherrington–Kirkpatrick model [20], the ground state
of which is a spin glass. It is intuitively clear that a spin glass cannot encode an
associative memory because of its slow dynamics and large number of metastable
states [20,21]. In general, there is a transition between these phases at some finite
value of p/N [9,11,19]. In the atom–cavity setting, p represents the number of cavity
modes that couple strongly to the atoms; thus, by tuning the cavity geometry, one
can increase p until the associative memory no longer functions.

2.1. Ring cavity and the van Hemmen model

We now consider the simplest nontrivial example of an associative memory, viz., that
involving Ising spins coupled to two cavity modes. A specific realization of such a
geometry is the ring cavity, which supports two degenerate modes ��(x) � e�ikx.
In this case the interaction term takes the translation-invariant form

Hring ¼ ��
X

i5j

cos½kðxi � xj Þ	Si Sj: ð3Þ

Note that Equation (3) is an infinite-ranged approximation to the RKKY
interaction; cf. Equation (1) of Ref. [18]. For a uniform distribution of positions,
Equation (3) is, in effect, a realization of the van Hemmen model [12], which a
particularly simple case of a Hopfield associative memory. The origins of frustration
in the van Hemmen model can be understood via the illustration in Figure 2: each
spin interacts ferromagnetically with those at distances less than 	/2, antiferromag-
netically with those at distances between 	/2 and 3	/2, and so on. Thus, frustrated
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three-spin configurations are generic, as shown in Figure 2, for a uniform
distribution of atom locations.

3. Exploring properties of associative memories

We now briefly describe how the main features of associative memories – viz., the
character of the ground state, the elementary excitations, and the magnetic
(or equivalent) susceptibility – can be probed experimentally in the cavity-based
setting. The first of these is the most straightforward to measure, as the ground state
overlaps macroscopically with the stored patterns [11], which correspond to cavity
mode functions. This macroscopic overlap leads, as in the related problem of
cavity-induced self-organization [15,16,22,23], to the superradiant emission of
photons from the cavity in the ordered phase. In other words, the onset of the
associative-memory phase should be accompanied by a sharp rise in the number of
photons leaking out of the cavity. Different ground states can be distinguished by
measuring (a) the spatial distribution of the emitted light [15,16], as well as (b) the
relative phase between the laser light and the light emitted from the cavity [23].
Moreover, one can check that the symmetry-breaking is indeed spontaneous by
subjecting the atoms to a pulse of thermal light that is resonant with one of the

Counter-propagating 
modes

Pump laser

(a)

(b)

FM AFM

λ

(c)

AFM FM AFMAFM

? ?AFM FMFM

Figure 2. (Color online). (a) The ring cavity geometry, showing two degenerate, counter-
propagating modes. The pump laser is taken to be oriented perpendicular to the plane of the
figure, as shown. (b) Variation of the sign of the spin–spin potential due to a single Ising spin
(the vertical arrow) in a ring cavity: spins in the white regions experience a ferromagnetic
interaction with the pictured spin, whereas those in the grey regions experience an
antiferromagnetic interaction. (c) Sign of the interaction experienced by a third spin due to
two spins (the vertical arrows) positioned as shown in the figure. The two spins shown interact
ferromagnetically and are therefore aligned; however, a third spin located in the patterned
regions would be frustrated, as it would interact ferromagnetically with one of the depicted
spins and antiferromagnetically with the other.
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atomic transitions [23], thereby randomizing the spin distribution; in the spin glass
regime, the state that the system selects once the thermal light is removed should vary
from shot to shot. (This is analogous to melting and refreezing the spin degrees of
freedom while maintaining the specific instance of positional disorder.)

Unlike conventional magnetically ordered phases, associative memories have a
high density of low-energy excitations, which contribute to the low-temperature heat
capacity – e.g., in the van Hemmen case [13], the heat capacity is linear at low
temperatures. In the atom–cavity system, it is more straightforward to probe the
density of excitations directly, via the following spectroscopic technique [24], than to
measure the heat capacity. One applies a probe laser beam that is much weaker, but
at a slightly higher frequency !LþD!, than the pump laser beam. The rate at which
photons from the probe laser beam are absorbed (i.e., transferred into the pump
beam) by the atomic cloud depends on the density of spin excitations at a frequency
D!; by measuring the absorption rate as a function of D!, one can deduce the
spectral function and thus the heat capacity.

Next, we discuss how the spin susceptibility can be accessed. A preliminary step
towards measuring the spin susceptibility is, of course, the application of (the ana-
logue of) a magnetic field to the spin system; this can be accomplished by directly
driving the transitions amongst the atomic levels that constitute the spin states, using
microwaves. The magnetization can then be measured via spin-selective imaging
techniques such as phase-contrast imaging [25]. An important technical subtlety
should be noted here: in most schemes, such as the � atom scheme proposed in
Ref. [8], the various spin states into which the system can order are different
superpositions of the microscopic atomic levels; however, the spin-selective imaging
techniques image the populations in individual microscopic levels. Thus, it is typically
necessary to apply a 
/2 microwave pulse to the system before imaging it.

Finally, we briefly mention how one can introduce ‘‘errors’’ into the ordered
phase and thus investigate the robustness of the associative memory to these errors.
One possible protocol is as follows: starting in the low-temperature,
memory-encoding phase, one uses a local spin-addressing scheme (see, e.g.,
Ref. [5]) to flip all the spins in a certain region of the system. After this, one
monitors the flux of photons out of the cavity as a function of time, and measures the
time-scale on which this flux achieves its steady-state value: this would correspond to
the system having fully retrieved the stored pattern. By using a combination of local
spin-addressing and phase-contrast imaging, one can also more generally measure
spin relaxation rates.

4. Concluding remarks

In this work we have schematically introduced an atom–cavity setting in which the
physics of associative memories and related phases, such as spin glasses, can be
realized and explored. This setting differs from most condensed-matter settings in
that the microscopic Hamiltonian describing the system is precisely known, and the
strength and structure of interactions can be tuned via the laser strength and cavity
geometry, respectively; moreover, it also differs from conventional ultracold atomic
settings in that the interactions are long-ranged and sign-changing in character.
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In addition to outlining how such phases can be realized, we have described various
schemes for measuring properties such as their ground-state degeneracies, excitation
spectra, susceptibilities, and efficacy at retrieving stored patterns. We note that a
prospect of particular interest raised by the current realizations is that they pave the
way for exploring the physics of associative memories, as well as spin glasses, in the
quantum regime [26].
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