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Penetration of nonintegral magnetic flux through a domain-wall bend in time-reversal
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It has been proposed that the superconductivity of Sr2RuO4 is characterized by pairing that is unconventional
and, furthermore, spontaneously breaks time-reversal symmetry. However, one of the key expected consequences,
viz., that the ground state should exhibit chiral-charge currents localized near the boundaries of the sample, has
not been observed, to date. We explore an alternative implication of time-reversal symmetry breaking: the
existence of walls between domains of opposing chirality. Via a general phenomenological approach, we derive
an effective description of the superconductivity in terms of the relevant topological variables (i.e., domain walls
and vortices). Hence, by specializing to the in-plane rotationally invariant limit, we show that a domain wall that
is translationally invariant along the z axis and includes an isolated bend through an angle � is accompanied by a
nonintegral magnetic bend flux of [(�/π ) + n]�0, with integral n, that penetrates the superconductor, localized
near the bend. We generalize this result to the situation in which gauge transformations and rotations about the
z axis are degenerate transformations of the chiral superconducting order. These results are independent of the
magnitude of chiral-charge currents that are predicted to flow along the core of domain walls. On the basis of the
specialized result and its generalization, we note that any observation of localized, nonintegral flux penetrating a
z-axis surface (e.g., via scanned-probe magnetic imaging) could potentially be interpreted in terms of the presence
of bent walls between domains of opposing chirality, and hence is suggestive of the existence of time-reversal
symmetry breaking superconductivity.
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I. INTRODUCTION

Recently, there has been developing excitement regarding
the nature of the superconducting state of the crystalline
compound Sr2RuO4.1 This is because, as in superfluid 3He,
the superconductivity has been proposed to be unconventional,
having Cooper pairs of the triplet type.2–4 In addition, recently
obtained evidence for the existence of half-quantum vortex
structures,5 which are expected to support zero-energy Majo-
rana modes,6,7 suggests that Sr2RuO4 could potentially be used
as a host medium for topological quantum computing.8,9 How-
ever, questions remain concerning the structure of the pairing
state (see, e.g., Refs. 10 and 11) and, in particular, whether
the superconductivity does indeed spontaneously break time-
reversal symmetry, and would thus form a chiral state.12–14 In
particular, the theoretical prediction (see, e.g., Ref. 15) that the
ground state should exhibit chiral-charge currents localized
near the boundaries of the sample, has not been verified
experimentally, to date, despite considerable efforts.16–18

Moreover, if the superconductivity of Sr2RuO4 spontaneously
breaks time-reversal symmetry, then, in addition to vortices,
domain walls that separate regions of opposing chirality would
enter as a new topological feature of the theory.19

Analogous to sample edges, domain walls are also predicted
to exhibit chiral-charge currents localized near the core of
domain walls.15,19 However, similarly to edge currents, no
obvious magnetic signatures of such domain wall currents
have been observed, to date, in scanning magnetic imagining
of Sr2RuO4.16–18 These observations are thus consistent with
proposals that suggest that the chiral-charge currents that flow
along edges and domain-wall cores are significantly reduced
(see, e.g., Refs. 11,14,20, and 21) with respect to the estimate
of Ref. 15.

For conventional superconductivity, the phenomenological
and symmetry-based approaches of London22 and of Ginzburg
and Landau23 predated the formulation of the microscopic
theory, due to Bardeen, Cooper, and Schrieffer.24 For uncon-
ventional superconductors, including those in which time-
reversal symmetry is spontaneously broken, it is likewise
possible to make progress phenomenologically.19,25,26 This is
the approach that we adopt in this paper as we explore certain
specific features of time-reversal symmetry broken states:
(i) the possibility that there are walls between domains of
opposing chirality, (ii) the threading of these walls by magnetic
flux, and (iii) the fact that this flux may penetrate in nonintegral
amounts.27,28 Lack of flux quantization has also been discussed
in related settings, such as superfluid condensates of ionized
hydrogen,29 as well as time-reversal symmetry broken super-
conductors that feature spin polarization,30 disclinations,31 or
intersecting grain boundaries between crystallites.32

Our central result is as follows: nonintegral multiples
of the superconducting quantum of magnetic flux penetrate
time-reversal symmetry breaking superconductors, localized
near individual bends in walls between chiral domains. We first
obtain this result via an effective description in terms of domain
walls and vortices, which shows that (in the special case of
the crystallographically in-plane rotationally invariant limit) a
domain wall that is translationally invariant along the z axis and
bends through an angle � is accompanied by a net flux (which
we term “bend flux”) of [(�/π ) + n]�0, localized in the bend
region, for arbitrary integral n (see Fig. 1), independent of the
magnitude of chiral-charge currents that are predicted to flow
along the core of domain walls. If the rotational symmetry
is broken down to discrete tetragonal symmetry, our central
result remains valid for the particular case of a domain wall
bent through π/2 radians. We generalize these results to the
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FIG. 1. (Color online) (a) and (b) schematically depict two rectan-
gular samples of a chiral superconductor with spontaneously broken
time-reversal symmetry. The two samples are assumed to be infinite
and translationally invariant along the z axis (out-of-plane) direction.
Domain walls (oriented black lines) traverse these samples following
locally straight paths, except for in isolated regions where they bend.
The domain walls separate the chiral superconductor into regions of
positive (+) and negative (−) chirality. The orientation of the domain
walls are defined in such a way that a closed domain-wall loop would
circulate a positive chiral region in a counterclockwise sense [see also
Eq. (12)]. (a) Depicts a domain wall that originates and terminates
on the superconductors boundary (thick gray box) and (b) depicts a
domain-wall loop. Two regions (one in each sample) are assumed to
be locally identical. These regions are indicated by dashed gray boxes.
(c) Shows a blowup of this region. In this region, the domain wall has
a single bend of angle �, measured counterclockwise relative to the
orientation of the domain wall. The bend is surrounded by a contour
C that is many penetration depths away from the bend. In the two
regions where the contour crosses the domain wall, it is assumed that
the contour follows locally identical paths (see Fig. 6 and Sec. V C).
In this paper, we show that a nonintegral amount of flux � penetrates
through the contour C, independent of the magnitude of chiral-charge
currents that are predicted to flow along the core of domain walls.

situation in which gauge transformations and rotations about
the z axis are degenerate transformations of the maximally
chiral superconducting order (i.e., are transformations that
have equivalent impacts). Due to chiral-charge currents that
flow along domain-wall cores, small deformations of any
contour that surround a domain-wall bend can alter the amount
of flux through the contour. Thus, to arrive at a unique value
of “bend flux” for an individual bend in a domain wall, we
consider particular contours with the the following property: In
each of the two regions where the contour crosses the domain
wall, the domain wall must follow locally identical paths (see
Figs. 1 and 6). For such contours,

∮
dxa(g−1)abJb is equal

to zero. Here, g is the superfluid density tensor and J is the
current density. As we discuss in the last paragraph of Sec.
V C, fluxoid quantization in conventional superconductors33

would imply that the flux through such contours would be
integral, i.e., would be equal to an integer multiple of �0, and
would not depend upon the bend angle. Thus, the existence of
bend flux depends in an essential way on the unconventional
nature of the superconductivity.

As “bend flux” is independent of the magnitude of the
chiral currents that flow along domain-wall cores, it is perhaps
useful to regard bend flux as a robust magnetic signature of
time-reversal symmetry breaking, alternate to the magnetic
signatures of the chiral currents themselves. In particular, our

specialized and more general results indicate that observations
of localized, nonintegral flux penetrating a z-axis surface (e.g.,
via scanned-probe magnetic imaging) could potentially be
interpreted in terms of the presence of bent walls separating
domains of opposing chirality, and hence would be suggestive
of the existence of time-reversal symmetry breaking supercon-
ductivity. Alternatively, if localized nonquantized flux is not
observed to penetrate a z-axis surface, this would suggest that
either (i) domain walls are not present, or (ii) domain walls are
present, but are arranged in a parallel array and, thus, are not
bent.

This paper is organized as follows. In Sec. II, we review
the structure of the Ginzburg-Landau order parameter appro-
priate for unconventional superconductivity with broken time-
reversal symmetry, along with the corresponding Ginzburg-
Landau free-energy functional. We assume that microscopic
effects such as multiple electronic energy bands,34 spin-orbit
interactions,35 and chiral currents15 can be incorporated,
self-consistently, into the Ginzburg-Landau functional by
choosing the appropriate values for the various material-
dependent coefficients. In Sec. III, we analyze this free
energy via an extension of the London limit, in which we
exchange the Ginzburg-Landau order-parameter description
for a reduced description in terms of the collection of
spatially varying “phaselike” fields that, for homogeneous
configurations, would parametrize the space of equilibrium
states. The extension amounts to taking the limit in which
the domain walls are vanishingly thin, compared with the
London penetration depth. (It should be noted that Heeb and
Agterberg, in Ref. 36, attach a different meaning to the term
“extended London limit”) Taking this limit enables us to focus
on the structure and implications of the topological excitations
of the order parameter, which have the form of vortices and
domain walls, and to relate the densities of these excitations to
singularities in the phaselike fields. In Sec. IV, we return to the
free energy, expressing it in terms of these excitation densities,
and in Sec. V, we use this framework to determine the spatial
distribution of magnetization associated with domain-wall
topological excitations, specifically walls that contain bends.
In this section, we also show that the thin-domain-wall limit
is not essential, nor is it essential for the Ginzburg-Landau
expansion of the free energy to be valid, in the sense that
our central result, i.e., the threading of bent domain walls by
nonintegral amounts of magnetic flux, continue to hold, even
when these restrictions are relaxed. In Sec. VI, we consider
three experimental settings in which nonintegral flux may be
observed; positive results in any one of them would provide
evidence for the existence of time-reversal symmetry breaking
superconductivity. Finally, in Sec. VII, we summarize our
key results and their implications. Some technical details are
relegated to a pair of appendices.

II. PHENOMENOLOGICAL THEORY OF
UNCONVENTIONAL SUPERCONDUCTIVITY

In this section, we describe the phenomenological theory
of superconductivity on which our analysis is rooted. This
approach is based on the notion of an appropriate super-
conducting order parameter, along with general symmetry
considerations, and thus can be explored independently of any
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specific microscopic details. The order parameter transforms
under the full symmetry group of the physical system, and
thus provides a representation of this symmetry group. (It is
common, in the context of planar superconductors, for the
point-group aspect of this symmetry to be the tetragonal group
D4h, reflecting the underlying electronic and atomic structure
of the crystalline material.) For Sr2RuO4, the material on which
we shall focus, it is known that, for a range of temperatures
close to the superconducting transition temperature Tc, the
superconducting properties are nearly isotropic with respect to
rotations about the z axis37,38 (i.e., the direction perpendicular
to the RuO2 planes), and is only weakly tetragonal about this
axis. Although, accordingly, the initial focus of our analysis
will be on the isotropic limit [which we term the in-plane
rotationally or SO(2)z-invariant limit], we do subsequently
address the cases in which the symmetry is lowered to the
discrete group D4h (and also, parenthetically, the group D6h).
At the outset, we therefore retain generality by determining
the representation furnished by the superconducting order
parameter appropriate to D4h symmetry, motivated by the
relevance of this group to Sr2RuO4.

We now determine the appropriate representation of the
superconducting order parameter, bearing in mind the fore-
going symmetry considerations. This choice of representation
is made according to the following three simplifying assump-
tions: (i) The ground state of the superconducting order should
transform trivially under lattice translations. Thus, at the length
scales relevant for a phenomenological description such as
the one used here, the ground state of the superconducting
order is translationally invariant. (ii) The representation of the
symmetry group should be irreducible. This is justified in the
case of Sr2RuO4 as, in the absence of an applied magnetic field,
only one superconducting transition seems to be observed.
(Recent experiments on Sr2RuO4 under uniaxial pressure do,
however, indicate the possibility of a second transition.39)
(iii) The representation should allow for the possibility that
the superconducting state spontaneously breaks time-reversal
symmetry. This would require that the dimension of the
representation be greater than unity. Taken together, these as-
sumptions fix the order parameter to transform according to the
�5 representation,25 which is two dimensional.40 Accordingly,
the order parameter is the complex-valued, two-component
field ηa(r), where the index a runs through the corresponding
basis functions of the representation (i.e., X and Y ), which, in
general, depends on the three-dimensional position vector r. To
simplify our analysis, we consider superconducting states that
are translationally invariant along the z axis, thus rendering
the physical problem effectively two dimensional. Provided
we apply external magnetic fields that are oriented along
the z direction (i.e., H = H ẑ), this is an option, owing to
the intrinsic translational invariance of the system along the
z direction. These requirements, taken together, then dictate
that the appropriate Ginzburg-Landau free-energy functional
governing the �5 representation is given by19,25

F ′[η′] =
∫

d2r ′
{
K′

abcd (D′
aη

′
b)∗(D′

cη
′
d ) − Aη′∗

a η′
a

+ 1

2
B′

abcdη
′∗
a η′∗

b η′
c η′

d + 1

8π
|(∇′ × A′) − H′|2

}
.

(1)

Here, two-dimensional summations are implied over the re-
peated indices a,b,c,d, and the covariant derivative is defined
via D′ := ∇′ − 2πi A′/�0, where �0 is the superconducting
flux quantum hc/2e.

In Eq. (1), the primed variables are dimensionful. We now
define relevant scales of length and energy and use them to
introduce convenient dimensionless variables, which we use
throughout the remainder of the paper and which we write
without primes. As a first step, for the coefficient tensors K′
and B′, we define the dimensionful scale factors K̃ and B̃,
which we then use to construct the dimensionless tensorsK :=
K′/K̃ and B := B′/B̃. In the in-plane rotationally invariant
limit, symmetry considerations dictate that K and B can be
parametrized in the following way:

Babcd = IacIbd + σ

2
Mδ

acM
δ
bd,

(2)
Kabcd = IacIbd + μEacEbd + τ

2
Mδ

acM
δ
bd,

where a summation from 1 to 2 is implied over the re-
peated index δ, the three real parameters {σ,μ,τ } are, in
principle, temperature dependent, and the constant tensors
{I,E,M1,M2} are defined via

I :=
(

1 0

0 1

)
, E :=

(
0 1

−1 0

)
,

(3)

M1 :=
(

1 0

0 −1

)
, M2 :=

(
0 1

1 0

)
.

The choice of tensor decomposition in Eq. (2) is motivated by
the observation that, under SO(2)z rotations, I and E each
transform trivially, whereas the pair {M1,M2} mix. If the
symmetry were not SO(2)z but D4h, the coefficients of the
the M1 M1 and M2 M2 terms may be unequal; however, for
D6h symmetry, they would remain the same.

We choose a natural scale for the order parameter, viz.,
η0 = (A/B̃)1/2, and use it make the definition η := η′/η0. We
then define the two length scales: (i) the penetration depth
λ := �0/(32π3η2

0K̃)1/2, which characterizes the length scale
for variations of the magnetic field; and (ii) the coherence
length ξ := (K̃/A)1/2, which characterizes the length scale
for variations in the amplitude of the order parameter. We then
scale all lengths by λ, via (r,∇,D) := (r′/λ,λ∇′,λD′). We
also make the conventional definition of the Ginzburg-Landau
parameter κ := λ/ξ . Next, we define the dimensionless vector
potential A, applied magnetic field H , and magnetic flux
� via (A,H,�) := (2πλA′/�0,2πλ2 H ′/�0,2π�′/�0). We
note that, with this choice of units, a flux equal to a flux
quantum has the dimensionless value 2π . As a final step in
the construction of the dimensionless variables, we choose as
a scale for the free-energy density the value f0 = 2K̃η2

0/λ
2,

using which we arrive at the dimensionless free energy
via F := F ′/λ2f0. It will be convenient for us to separate
contributions to the dimensionless free-energy density into two
groups: the “London-type” terms fL and the potential terms
fP, respectively defined via

fL = 1
2Kabcd (Daηb)∗(Dcηd ) + 1

2 |(∇ × A) − H|2, (4a)

fP = 1
2κ2

(−η∗
aηa + 1

2Babcdη
∗
a η∗

b ηc ηd

)
, (4b)
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so that

F [η] =
∫

d2r{fL + fpot}. (4c)

One way in which F differs from the conventional
Ginzburg-Landau free energy is that the tensors K and B
allow for a larger number of material-dependent parameters,
the latter free energy having only a single such parameter,
viz., κ . It is possible to estimate these additional parameters
under the assumptions of weak coupling and a cylindrical
Fermi surface,41 and this results in the following values:
(μ,τ,σ ) = (0,1,1). However, due to the presence in Sr2RuO4

of effects such as multiple electronic energy bands,34 spin-
orbit interactions,35 and chiral currents,15 the parameters
of a Ginzburg-Landau theory that incorporates such effects
self-consistently are expected to be modified from their weak-
coupling values, perhaps significantly. Thus, we shall not limit
our analysis to the weak-coupling values of these parameters.

In the section that follows, we analyze the potential terms of
the phenomenological free energy, Eq. (4b), and, specifically,
review how its structure leads to both vortices and domain
walls. In particular, we derive the vortex and domain-wall
densities in terms of the “phaselike” variables; in Sec. IV,
we construct the effective free energy in terms of topological
variables, such as the vortex and domain-wall densities.

III. TOPOLOGICAL FIELD CONFIGURATIONS

As is well known, for many purposes, the state of an ordered
phase can be adequately specified via an order-parameter
field that takes values lying in the subspace of degenerate
homogeneous equilibrium states R (see, e.g., Ref. 42). If,
as an example, different regions of a sample were to adopt
distinct such values, it can, depending on the structure of the
order parameter, be possible for the system to become trapped
into order-parameter configurations that possess topologically
stable defects.42 These are spatially varying configurations
of the order parameter that can not be removed via local
deformations. The framework of homotopy groups of R
enables one to identify and classify the possible topologically
stable defects.

As is also well known (see, e.g., Refs. 7,43–45), there can
be a rich interplay between the topological features of the
(bosonic) order-parameter fields that describe ordered phases
and the qualitative character of any fermionic particles moving
in the presence of such order-parameter fields. However, in
this paper, we only consider the topological features of the
appropriate order-parameter field, leaving for future work the
analysis of its implications for the motion of fermions.

To determine R for the present problem, we follow the
standard approach (see, e.g., Ref. 25) and analyze the structure
of the potential terms of Eq. (1). To simplify the analysis,
it is useful to parametrize the two complex fields of the
superconducting order parameter η = (ηX,ηY ) in terms of
four real fields {|η|,θ,γ,β} that transform simply under the
operations of the symmetry group

η = |η|eiθ Rγ ·
(

cos(β/2)

i sin(β/2)

)
, (5a)

Rγ :=
(

cos γ − sin γ

sin γ cos γ

)
. (5b)

Now, elements of the product group U(1) × SO(2)z
of gauge transformations and z-axis rotations can be
parametrized via a phase angle θ ′ and a rotation angle γ ′.
Under such elements, the order parameter η transforms as

η(|η|,θ,γ,β) → η(|η|,θ + θ ′,γ + γ ′,β); (6)

under time reversal, η transforms as

η(|η|,θ,γ,β) → η(|η|, − θ,γ, − β). (7)

Thus, we see that the parametrization of η[ Eq. (5a)] is given in
terms of an amplitude |η| and phase θ that are similar to those
used in conventional superconductivity, but also two angular
variables γ and β that respectively characterize the additional
nontrivial SO(2)z and time-reversal structure associated with
the version of unconventional order under consideration (but,
see Ref. 46). In terms of the parametrization given in Eq. (5a),
the potential terms (4b) become

fP = −κ2

2
|η|2 + κ2

4
|η|4 + 1

8L2
|η|4cos2β, (8)

in which we have introduced the dimensionless length L =
σ−1/2/κ , which will turn out to determine the domain-wall
width. As required by SO(2)z and time-reversal invariance,
these potential terms are independent of γ , as well as being
even functions of β. If the symmetry were reduced to D4h, there
would be the possibility of an additional term, proportional
to |η|4 cos(4γ ) cos2(β). In the present setting, to achieve the
standard London limit, in which the magnitude of the order
parameter |η| is fixed at unity, we take the joint limit (κ,σ ) →
(∞,0), keeping L fixed. In this limit, the local structure of the
order-parameter space can be visualized as being the product
of (i) a circle, corresponding to the gauge degree of freedom
θ , and (ii) an open subset of a sphere corresponding to the
angular variables {γ,β}) (see Fig. 2).47

The parameters (θ,γ ) and (θ + π,γ + π ) give identical
values of the order parameter [see Eq. (5a)], and therefore
correspond to physically identical configurations.

As we aim to discuss states having time-reversal symmetry
breaking, we have assumed the Ginzburg-Landau parameter
σ [defined in Eq. (2)] to be positive as, for sufficiently
weak SO(2)z symmetry breaking, this favors states in which
β = ±π/2. These states are related by time-reversal sym-
metry, and can be visualized as lying at the poles of the
order-parameter sphere (see Fig. 2). In these states, the order
parameter takes the form

η|β=±π/2 = |η|ei(θ∓γ ) 1√
2

(
1

±i

)
. (9)

If, across the entire system, the state had chirality β =
π/2, only a single, position-dependent, phase field would
be required to describe low-energy excitations away from
equilibrium (and, similarly, if the state had only chirality β =
−π/2). On the other hand, to describe low-energy excitations
featuring both chiralities, as well as the “domain walls”
between them (through which β changes between ±π/2),
a pair of position-dependent phase fields θ (r) and γ (r) is
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θ+ = θ− γ

θ− = θ + γ

η ∼ (1, i)

η ∼ (1,−i)

θ

R

×
γ

β

FIG. 2. (Color online) Visualizations of the order-parameter
space. In the standard London limit, in which κ → ∞, the order
parameter is restricted to the coset space of configurations with
local structure isomorphic to S1 × S2 [see the discussion following
Eq. (8)]. When, in addition, the Ginzburg-Landau parameter σ of
Eq. (2) is positive, the north and south poles of the sphere become
free-energy minima, and are thus energetically preferred, relative to
the equator. In the thin-domain-wall limit (i.e., L → 0), which we
term the extended London limit, this preference is extreme. In this
latter case, the coset space describing degenerate minimum-energy
configurations becomes S1 × {+,−}.

required. It will often be convenient to exchange these fields
for the pair

θ±(r) := θ (r) ∓ γ (r). (10)

From Eq. (8), we can see that within a domain of maximally
positive (or maximally negative) β, the free energy does not
depend on θ+ (or θ−), and this remains true even after weak
SO(2)z symmetry breaking terms are included in fP. Con-
sequently, the subspace of energy-degenerate homogeneous
equilibrium states is disconnected, being composed, topolog-
ically, of two circles, which exchange under time reversal,
i.e. R = S1 × {+,−} (see Fig. 2). This order-parameter space
combines two of the most familiar order-parameter spaces: the
S1 of conventional superconductivity and superfluidity, and the
{+,−} of Ising magnetism.

In general, to analyze the topological structure of order
parameters, we consider their homotopy groups πn(R) as-
sociated with R. For the specific case of R = S1 × {+,−},
since each connected piece is isomorphic to S1, the first
homotopy group π1(R) ∼= Z. This implies that a domain of
a given chirality can exhibit vortex singularities as, e.g., in
the case of conventional superconductivity. As the space R
is topologically disconnected, the zeroth homotopy group is
also nontrivial, i.e., π0(R) ∼= Z2; this implies the possibility
of domain walls, which separate regions of opposing chirality.
(Domain walls are common features of systems in which the
order parameter space R is disconnected as in the Ising case.)
The Z2 value of π0 indicates that domain walls annihilate
one another. We remind the reader that order parameters
for which πn(R) is nontrivial support topological defects of
co-dimension n + 1. Thus, in the effectively two-dimensional
(real) space that we are considering, vortices are points and
domain walls are lines.

The domain walls and vortices determine the qualitative
structure of order-parameter field configurations, e.g., vortices
in a domain of positive or negative chirality correspond to
topological singularities in θ+(r) or θ−(r). In particular, when

there are a total of N± vortices at positions {R±
ν }N±

ν=1 having
vorticities {q±

ν }N±
ν=1 interior to the positive- (or negative-)

chirality domain, the singularities of θ± can be characterized
by the local vortex density (scaler) fields ρ+

v and ρ−
v , which

are defined via

2πρ±
v (r) := Eab∇a∇bθ

±(r) = 2π

N±∑
ν=1

q±
ν δ(r − R±

ν ). (11)

Here and elsewhere in this paper, the Dirac delta functions δ

are are softened on an appropriate length scale; for vortices, it
is the vortex core diameter.

Domain walls also have implications, but for the qualitative
structure of β(r). In two spatial dimensions, domain walls
are lines, and a collection of N then can be characterized
by specifying their trajectories {Rn(s)}Nn=1 as functions of an
arclength parameter −sn � s � sn. By requiring, in addition,
that the unit vector normal to the domain wall n̂(s), which is
related to the domain wall trajectory via

n̂a(s) = (cos φ(s), sin φ(s))a = −Eab ∂sRb(s), (12)

point from the negative toward the positive chiral domain,
the sense of the vector tangent to the domain wall ∂s R(s)
is determined. It is natural to associate the locations of the
domain walls with the zeros of the field β(r); for a given set
of domain walls, the equilibrium form of β(r) interpolates
smoothly (with a solitonic form whose thickness is then the
domain-wall width) between regions in which it is essentially
uniform and equal either to π/2 or to −π/2. Such structure
can be characterized via a domain-wall density (vector) field
ρdw, defined via

ρdw(r) := 1

2
∇ sin βdw(r) ≈

N∑
n=1

∫ sn

−sn

ds n̂(s) δ[r − Rn(s)].

(13)

Here, the delta function is softened on the length scale of
the domain-wall width. We shall make use of the vortex and
domain-wall densities given in Eqs. (11) and (13) in Sec. IV in
the construction of an effective free energy for the topological
variables.

It should be recognized, however, that these densities do
not, by themselves, fully specify the topological structure of
the order-parameter field. To see this, note, e.g., that a single
island chiral domain affects the topology of the surrounding
domain by rendering it multiply connected. Thus, to fully
specify the topological structure of the θ+(r) and θ−(r) fields,
in addition to specifying the location and vorticity of the
individual vortices that lie within the respective domains,
the global winding of of θ+(r) or θ−(r) must be specified
around a loop that encircles each island [see Fig. 3(a)]. To
generalize to chiral domain structures that involve islands
within islands, we note that to fully specify the topological
structure of each positive (negative) connected chiral domain
region, one must specify the winding of the θ+ (θ−) field
around each independent noncontractible loop of that region
[see Fig. 3(b)].48

In the remainder of this section, we explain the connection
between the γ (r) field on a single domain-wall loop surround-
ing an island and the determination of the global freedom to
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FIG. 3. (Color online) (a) A large region of positive chirality
having an internal-island domain of negative chirality. As the positive-
chirality region is multiply connected, the winding of θ+ around the
contour C1 is an independent topological variable. (b) Six connected
chiral regions (including the exterior, positive-chirality region). For
every multiply connected chiral region, there is an independent
topological variable associated with each noncontractible loop. As
an example, the multiply connected negative-chirality region has two
independent, noncontractible loops C2 and C3. Each of these loops is
associated with an independent winding number for θ−.

wind possessed by the multiply connected region exterior to the
island. We also examine various situations involving individual
chiral-domain islands, chosen to illustrate the physical roles
played by the γ (r) field. Before doing this, we remark that,
on any domain-wall line R(s) (i.e., a locus of points on which
β = 0), the order parameter takes the form

η|β=0 = |η|eiθ

(
cos γ

sin γ

)
. (14)

Thus, we see that the field γ evaluated along a domain-wall
trajectory R(s) defines an angular variable �(s) := γ (R(s))
for each value of the arclength parameter s. We furthermore
see that the function �(s) determines the structure of the
order parameter along the domain-wall line, specifically via
the planar vector (cos �(s), sin �(s)).

To illustrate the physical role played by �(s), we begin
by considering the special case of a simply connected chiral
domain, bordered by a domain wall, and thus interior to a larger
surrounding region of opposing chirality. Two topological
numbers (nθ ,nγ ), defined as follows, characterize the winding
of the order parameter along paths that lie near to the domain
wall:

2πnθ :=
∮

dw
dθ , 2πnγ :=

∮
dw

d� , (15)

where “dw” indicates that the line integrals are evaluated along
the domain wall, and the orientation of these integrals is taken
to be counterclockwise. From Eq. (10), we see that (nθ ,nγ )
provide the same information as the two topological numbers
(n+,n−), defined via

2πn± :=
∮

dw
dθ± ; (16)

specifically, n± = nθ ∓ nγ . We note that nθ and nγ are either
both integral or both half-integral [so that η is single-valued;
see Eq. (14)], and thus that n+ and n− are both integral.

For the sake of definiteness, we consider a domain of
negative chirality that constitutes a simply connected island
within a larger, positive chiral domain. The positive domain
is then rendered multiply connected; see Figs. 3 and 4. Each

(a) (b)

(c)

FIG. 4. (Color online) Three types of domain-wall loops (black
lines). The gray line segments intersecting the domain wall indicate
the local direction of the planar vector (cos �(s), sin �(s)) (i.e., the
strongest-pairing direction). Each loop is characterized by the three
winding numbers (n+,n−,nγ ) [see Eqs. (15) and (16)]: (a) (−1,1,1);
(b) (−2,0,1); and (c) (1,0, − 1/2). These domain-wall loops are
topologically equivalent to vortices with the following properties:
(a) singly quantized and rotationally invariant; (b) coreless and
rotationally invariant; and (c) singly quantized and coreless.

of the winding numbers (n+,n−,nγ ) corresponds to a distinct
physical property:

(i) The winding number n+ of the exterior (positive)
domain essentially determines, via �tot = �0n+, the total flux
�tot through an area that extends beyond the region bounded
by the domain wall by a few penetration depths.

(ii) The winding number n− of the interior (negative)
domain is the net number of vortices in the interior domain; if
n− = 0, then the domain-wall loop can be coreless, i.e., there
is no topological requirement that there exist locations where
|η| vanish.

(iii) Whether or not the winding number nγ is unity
determines whether or not the the superconducting order can
be rotationally invariant around a circular domain wall.
Importantly, as we previously noted in this section, by
specifying the vorticial content in the interior and exterior
domains, the winding number of the interior domain is
uniquely determined, whereas the winding number of the
exterior domain is not. However, if in addition to the vorticial
content the value of nγ is specified, the winding number of
the exterior domain is also determined. In the particular case
under consideration, n+ = n− − 2nγ .

Thus, nγ plays a dual role, determining both the total flux
�tot, via its influence on n+, as well as whether or not the
superconducting order can be rotationally invariant.

We pause to make two remarks concerning issues of
energetics. First, as a domain wall has finite energy cost
per unit length, to reduce its energy, a domain-wall loop
may shrink in size. When viewed on a length scale much
larger than the domain size, a small domain-wall loop appears
topologically equivalent to a vortex,49 and thus provides an
alternative description of the various vortex structures that can
occur in superconductors with broken time-reversal symmetry
(see, e.g., Refs. 36,50, and 51). Second, in the limit in
which the free energy is rotationally invariant and κ is large,
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energy considerations prefer domain-wall loops that are singly
quantized (i.e., contain flux �0), rotationally invariant, and
coreless. However, owing to the linear relationship between
n+, n−, and nγ , these preferences can not all be simultaneously
satisfied. Compromise order-parameter configurations result
from this frustration; we show in Fig. 4 examples of the three
types of vortices that satisfy two of the three preferences.
Which particular type of vortex is preferred, energetically, will
depend on the details of the parameters in the Ginzburg-Landau
theory.

To illustrate this frustration and the dual physical role
played by nγ , we now consider two of the three small domain-
wall loops that are favored energetically in the extreme London
limit. In this limit, energetic considerations allow only coreless
vortices, e.g., n− = 0, and this implies that �tot = −2�0nγ .
Thus, we see that, in the extreme London limit, if we also
impose rotational invariance, namely, nγ = 1, we effect the
magnetic properties of the vortex, requiring the vortex to be
doubly quantized (i.e., contain 2�0 of flux) and fixing the
sense of the magnetic flux. Conversely, if we fix the vortex
to be singly quantized, then, in the extreme London limit,
the vortex would not be rotationally invariant. This interplay
between the rotational and magnetic structure, perpetrated by
the dual nature of the γ field, underpins the central results of
this work.

So far, we have established that, when taken together with
vorticial content, nγ fixes the overall winding of the order
parameter along a noncontractible loop within a multiply
connected chiral domain. However, to describe the local
structure of a domain wall [see Eq. (14)], it is necessary to
specify the local value of γ [viz., �(s)] along the domain wall.
As we shall see in Secs. IV and V B, the local behavior of
�(s) also plays a role in determining the flux that penetrates
through the domain wall locally.27,28 Thus, in order to develop
a local description of the superconductor, the natural degree
of freedom to use for specifying the additional topological
structure afforded by the presence of multiply connected
regions is �(s) rather than nγ .

In the following section, by starting with the Ginzburg-
Landau free energy, we construct an effective local free energy
in terms of the topological variables. Specifically, we show
that, in addition to the vortex density and domain-wall density,
the free energy depends on a third topological variable, viz.,
the value of �(s) along domain walls.

IV. EFFECTIVE FREE ENERGY IN TERMS OF
TOPOLOGICAL DESCRIPTORS AND THE

EXTENDED LONDON LIMIT

The aim of this section is to begin with the description
of the superconducting system in terms of a Ginzburg-Landau
free-energy functional dependent on the order-parameter field,
and to derive from it a reduced description in terms of the
vortex and domain-wall densities and �(s) along domain walls.
In this reduced description, the focus is on the dependence
of the free energy on the topological variables [i.e., the
locations of the vortices and domain wall, as well as �(s)].
The presumption is that the degrees of freedom associated
with exciting the order parameter around the state of minimum
free energy within a fixed topological sector [defined via the

locations of the vortices and domain walls and �(s)] have been
eliminated, either by integrating them out or by setting them
to their stationary values. For a numerical implementation of
the latter procedure applied to superconductivity in Sr2RuO4,
see Ref. 52. In this paper, our aim is to proceed analytically,
a task that is eased by our working in a particular limiting
regime, an elaboration of the standard London limit that we
term the “extended London limit.” We remind the reader
that the standard London limit amounts to assuming that the
Ginzburg-Landau parameter κ tends to infinity, which enforces
the condition |η| = 1. To pass to the extended London limit, we
make the additional assumption that the width of domain walls,
which is controlled by the parameter L, tends to zero. In this
limit, the domain wall becomes vanishingly thin, compared
with the penetration depth.

We begin with the Ginzburg-Landau free energy [Eq. (4)]
and first pass to the standard London limit. From Eq. (8), we
see that, in this limit, the order-parameter amplitude |η| is
energetically prohibited from departing from unity; inserting
the corresponding form of the order parameter [i.e., Eq. (5a)
but with |η| = 1] into Eq. (4), making the definition (��)ai :=
(∇aθ − Aa,∇aγ,∇aβ)i , and dropping constant terms arising
from the potential terms, we arrive at the unconventional
superconducting free energy FL corresponding to the London
free energy for conventional superconductivity, i.e.,

FL[θ,γ,β,A,H] =
∫

d2r

{
1

2
Kabcd �bidj (��)ai (��)cj

+ 1

8L2
cos2 β + 1

2
|(∇ × A) − H|2

}
,

(17)

ξai := R
γ

ab

(
iIbc, − Ebc,iM

1
bc

)
i
(cos β,i sin β)c,

�aibj := 1

2
(ξ ∗

aiξbj + ξ ∗
bj ξai),

where repeated indices i,j, . . . are summed from 1 to 3.
Because in this free energy the coefficient � is contracted
with a tensor that is symmetric under time reversal, we have
adopted a form for � that is manifestly symmetric under time
reversal. In general, the supercurrent density J(r) is given by
−δFsc/δ A(r) and, continuing within the London limit, we see
that it has the form

Ja = gab(∇bθ − Ab) + Ja, (18a)

Ja := − sin β ∇aγ + 1

4

(
2μ cos β Eab + τMγ

ab

)∇bβ, (18b)

Mγ

ab := Rγ
acR

γ

bdM
1
cd =

(− sin 2γ cos 2γ

cos 2γ sin 2γ

)
ab

, (18c)

gab := Iab + 1

2
τ cos βMγ−π/4

ab . (18d)

Note the occurrence of the unconventional contribution J
to the supercurrent, which includes currents that are localized
near domain walls.19 This contribution is manifestly odd under
time reversal (which is evident because each term is odd in β).

We now proceed to take the extended London limit, in
which domain walls are controlled to be thin compared with
the penetration depth. We begin by noting that the term arising
from fP that remains in the free-energy density in the London
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limit is cos2(β)/8L2, and that this term contributes positively
for any value of of β �= ±π/2. In particular, for a domain
wall, across which β varies from π/2 to −π/2, the balancing,
in equilibrium, of this potential term against contributions
to the free energy that result from gradients in β would
produce a spatial configuration in which β changes from π/2
to −π/2 over a length scale (i.e., the domain-wall width)
proportional to L. Thus, in the limit L → 0, the widths of
domain walls are controlled to be arbitrarily small, compared
with the penetration depth (which, we remind the reader, we
have chosen to set the unit for lengths).

This extension of the London limit results in useful
simplifications. First, as the domain walls are arbitrarily thin,
regions in which β is uniform and equal to ±π/2 dominate,
areally. Thus, terms proportional to cos β or sin β become 0 or
sgnβ, respectively. [Note that sgnβ is the unit step function,
taking the values 1 (or −1) for regions of positive (negative)
chirality, i.e., β > 0 (or β < 0)]. As an explicit example, the
term in the superfluid density tensor g proportional to cos β

can be neglected in the extended London limit, and thus we
may make the replacement g → I . Physically, this means that,
even in the presence of domain walls, the in-plane Meissner
response is isotropic.

A second useful simplification that arises in the extended
London limit is that it enables us to express contributions to
the free energy and supercurrent involving gradients of β in
terms the domain-wall density ρdw, defined in Eq. (13). Using
Eq. (18), we can thus, e.g., write

J = ∇θ − A + J , (19a)

J := −sgnβ ∇γ +
(
μE + π

4
τM�(s)

)
· ρdw . (19b)

For the sake of compactness, here and elsewhere we use the
notation M�(s) · ρdw as shorthand for

∫
ds M�(s) · n(s) δ[r −

R(s)].
Having discussed how, in the extended London limit, the

spatial variation of β is fully incorporated via the locations
of the domain walls {Rn(s)}, we continue with our goal
of constructing an effective free energy by eliminating all
degrees of freedom associated with excitations of the order
parameter around the state of minimum free energy within a
fixed topological sector. With this in mind, our next step is to
eliminate the nontopological variations in the θ field.

As the superconducting order may possess vortices, θ is
not, in general, a single-valued function of position, and
therefore it may exhibit singular behavior (i.e., at the cores
of vortices). Our initial strategy for eliminating the nontopo-
logical variations of θ is to decompose it into two components:
θ = θsm + θv, where θsm is a smooth, single-valued part, and
θv is the part that accounts for any vortex singularities. This
separation is not unique, but we shall see, after eliminating θsm

from the free energy by setting it equal to its stationary value
θ̄sm, that the resulting free energy is, for any fixed choice of
topological variables (such as vortex positions and strengths),
independent of any particular choice of decomposition. To
implement this elimination of θsm, we need only consider the
terms in the free-energy density associated with the kinetic
energy of the supercurrents (i.e., associated with J 2), as other

terms do not depend on θ ; in the extended London limit, the
free energy FJ constructed from these terms is given by

FJ =
∫

d2r
1

2
|∇θsm + ∇θv − A + J |2 . (20)

Stationarity of this expression with respect to θsm reads as

−∇2θsm = ∇ · (∇θv − A + J ), (21)

and, by using the Green’s function for the Laplace operator in
two dimensions [i.e., G(r) = − 1

2π
ln |r|, obeying −∇2G(r) =

δ(r)], the stationary solution θ̄sm can be expressed as

θ̄sm(r′) =
∫

d2r G(r′ − r)∇ · (∇θv − A + J )(r). (22)

By inserting θ̄sm into Eq. (20), we arrive at the following form
for the free energy:

FJ = 1

2

∫
d2r |JT|2, (23a)

J T
a (r) : =

∫
d2r ′ (Iab δ(r − r′) − ∇aG(r − r′) ∇′

b)

×(∇bθv − Ab + Jb) (23b)

=
∫

d2r ′ Eab∇b G(r − r′) Ecd∇′
c(∇′

d θv − Ad + Jd ),

where we have used the elementary result EabEcd =
IacIbd − IadIbc and the defining equation obeyed by G. The
procedure of minimizing FJ with respect to θsm can be
described, physically, as compensating for any source of
longitudinal currents (i.e., current flows that build up at some
location) or, equivalently, as a projection on to the subspace
of transverse currents. This construction brings to the fore the
vorticial content of the transverse supercurrent, which arises
both from vortices and domain walls. Specifically, one can
identify the vorticity W via

W = Eab∇a(Jb + Ab) = Eab∇a(∇bθv + Jb). (24)

Owing to the unconventional contribution to the supercurrent
J , the vorticity W in unconventional superconductivity in
the extended London limit comprises both a vortex term Wv,
which is common also to conventional superconductivity and
is proportional to the total vortex density ρv, and a domain-wall
term Wdw, which is proportional to the domain-wall density
ρdw:

W = Wv + Wdw, (25a)

Wv := 2π
( 1

2 (1 + sgnβ)ρ+
v (r) + 1

2 (1 − sgnβ)ρ−
v (r)

)
, (25b)

Wdw := [f (s) n̂(s) + d(s) · ∇] · ρdw, (25c)

where

f (s) := −2 ∂s�(s), (26a)

d(s) := −μ I + π

4
τ R2[φ(s)−�(s)]. (26b)

Several points are worth noting here. First, Wv is a weighted
sum of the vortex densities in the chiral domains, which makes
evident the fact that only those singularities of θ+ (θ−) that are
located in the positive-chirality (negative-chirality) domain are
associated with local vorticity. Second, via Eq. (25c), we see
that the domain-wall vorticity Wd can be expressed as a sum
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of two contributions: a “monopole” contribution of strength
f , which determines the net magnetic flux penetrating the
superconductor; and a “dipole” contribution of strength d,
which is generated by currents that flow along domain-wall
cores but do not create net flux through the superconductor.
Third, within this extended London limit, the monopole and
dipole contributions are expressible in terms of the topological
degrees of freedom �(s) and φ(s). We remind the reader that
φ(s) is determined from the trajectory of a domain wall R(s)
via Eq. (12).

The final step in deriving the reduced free energy is to
eliminate the vector potential A. Although it is possible to
proceed directly using Eq. (23) (see Appendix B), the fact
that the current JT in Eq. (23) is determined via a nonlocal
expression makes it more efficient to apply an alternative, dual
approach, which uses a Hubbard-Stratonovich transformation
of the nonlocal kernel via an auxiliary field �; see, e.g.,
Refs. 53 and 54. The resulting, dual expression for the free
energy FJ is thus given by

FJ [�] =
∫

d2r

{
−1

2
|∇�|2 + �(W − B)

}
. (27)

Under the constraint that it be evaluated at the stationary value
of �, this form for FJ has the same value as the one given in
Eq. (23). We note, in passing, that the dual free energy FJ [�]
depends explicitly on the local value of the perpendicular
magnetic field B (= Eab∇aAb). Thus, the full expression
for the free energy in the extended London limit, which
also includes the magnetic field energy

∫
d2r 1

2 (B − H )2,
depends on B locally. This locality renders simple the task of
identifying the stationary value of B. Eliminating B by setting
it equal to its stationary value, we arrive at the following form
for the extended London limit of the free energy:

FEL =
∫

d2r

{
−1

2
�(−∇2 + 1)� + �(W − H ) + fcore

}
.

(28)

In this form, the first two terms, which together account
for the kinetic energy of the supercurrent and the magnetic
field energy, have the virtue of being local and determined
via W (i.e., the vorticity of the supercurrent). The remaining
contributions to the free energy given by Eq. (17) are accounted
for via fcore, which is associated with the core energy of the
domain walls and is negligibly small in regions lying beyond
a distance of a few wall widths L from a domain wall. An
explicit expression for fcore in terms of the fields γ and β

is given in Appendix A.55 Thus, in the neighborhood of the
extended London limit, in which L becomes small (but remains
nonzero), the domain-wall energy

∫
d2r fcore can be expressed

in terms of an energy per unit domain-wall length Ecore, which
depends locally upon on �(s) (i.e., γ evaluated on the domain
wall) together with the shape of the domain wall [e.g., via
φ(s)], along with their arclength derivatives:∫

d2r fcore =
∑

n

∫ sn

−sn

ds Ecore [�n(s), . . . ; φn(s), . . .] .

(29)

We are now in the position to complete our derivation of
the reduced free energy FEL in the extended London limit,

reduced in the sense that it depends only on the external
applied magnetic field and the topological variables via the
vorticity W and and domain-wall core energy density fcore.
Upon eliminating � from Eq. (28), FEL becomes

FEL =
∫

d2r fcore

+
∫

d2r d2r ′

4π
[W (r)−H (r)]K0(|r−r′|)[W (r′)−H (r′)],

(30)

where K0 is a modified Bessel function of the second kind.
A virtue of the formulation that we have employed is that
it enables the efficient calculation of the magnetic response
of the superconductor in the extended London limit via the
thermodynamic relation

MEL(r) = − δFEL

δH (r)
=

∫
d2r ′

2π
K0(|r − r′|)[W (r′) − H (r′)

]
.

(31)

One can also use the Ampère-Maxwell law to determine
the spatial distribution of equilibrium supercurrents in this
limit, which gives JEL = E · ∇MEL. We see that, in this
limit, the magnetic response of the superconductor resulting
from domain walls can be grouped into a dipole term Mdw,d

and a monopole term Mdw,m that result from the dipole and
monopole contributions to the domain-wall vorticity, and that,
respectively, can be expressed as

Mdw,m(r) =
∫

d2r ′

2π
K0(|r − r′|) f n · ρdw(r ′),

(32)

Mdw,d(r) =
∫

d2r ′

2π
K0(|r − r′|) (d · ∇′) · ρdw(r ′).

Expressions for f and d are given in Eq. (26). The dipole
contribution results from currents that flow along the domain-
wall core and, in particular, is directly proportional to the
magnitude of such currents. One way to understand the dipole
contribution is to make the following analogy to a conventional
superconductor: If it were possible to embed within a conven-
tional superconductor an external sheet current, the magnetic
response of the conventional superconductor would then have
the form given by Mdw,d. In contrast to the dipole contribution,
the magnitude of the monopole contribution is independent of
the magnitude of the currents that flow along the domain-wall
core and instead is determined by the arclength derivative
∂s�(s).

As an initial illustration of this approach, we consider
a straight domain wall, lying along the y axis in infinite,
three-dimensional superconductor. We assume that there is
no applied magnetic field, i.e., H = 0. We further assume that
the superconducting state is of positive (negative) chirality for
x < 0 (x > 0), so that by the convention defined by Eq. (12) we
have R(s) = s ŷ. As we show in the Appendix A, a variational
analysis, based on an assumed form for the behavior of β

transverse to a translationally invariant domain wall, suggests
that the equilibrium value of � is φ. Assuming this to be case,
we then find, from Eq. (26), that the domain-wall vorticity has
no monopole part [i.e., f (s) = 0] but does have a dipole part,
which is given by d = [(πτ/4) − μ]I .56 Then, from Eq. (31),
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we find that magnetization and current densities vary with the
spatial distance x from the domain wall as follows:

MEL(x) = − 1
2 [(μ − (πτ/4)] sgn(x) e−|x|, (33a)

JEL(x) = [μ − (πτ/4)][δ(x) − e−|x|/2] ŷ. (33b)

As, for this domain-wall configuration, the monopole contribu-
tion f (s) to the domain-wall vorticity is zero, the net magnetic
flux (per unit length of domain wall) [e.g. the magnetic flux
(per unit length of domain wall) integrated transversally]
vanishes. The jump discontinuity in M(x) at x = 0 results
from a supercurrent that flows along the domain-wall core.
For the case of Sr2RuO4, we can use Eq. (33b) to estimate the
magnitude of this current. In SI units, the dimensionful current
density J ′ is given in terms of its dimensionless counterpart J
via J ′ = (2πλf0/�0) J . Then, using J to compute the current
passing through a narrow window bracketing the domain wall,
we arrive at the following expression for the dimensionful
domain-wall current I ′ per Ru-O layer:

I ′ = 2πλ2f0

�0
�z

∫ 0+

0−
dx [μ − (πτ/4)]δ(x) (34a)

= 2πλ2f0

�0
�z [μ − (πτ/4)], (34b)

where �z is the thickness of an Ru-O layer. To find the numeri-
cal value of this current in amps, we note that in SI units f0 can
be expressed in terms of the thermodynamic critical field Hc

as 2κ−2μ0H
2
c . By using the parameter values appropriate for

Sr2RuO4,1 i.e., μ0Hc = 0.023 T, λ(0) = 0.15 μm, κ = 2.3,
and �z = 1.2 nm, we arrive at the following estimate for the
current: [μ − (πτ/4)] × 1.3 × 10−5 A per Ru-O layer flowing
along a domain-wall core. For this result to match previously
made theoretical estimates (see Refs. 15 and 57), one would
need to have the material parameters obey [μ − (πτ/4)] ≈ 1.

In the next section, we extend our discussion to cope with
situations lying beyond straight domain walls, thus allowing
the domain walls to have bends. As part of this discussion, we
employ the reduced description of the superconductor in the
extended London limit derived in the present section to show
that (i) a net magnetic flux penetrates the superconductor near
bends, and (ii) this flux is generically a nonintegral multiple
of the superconducting flux quantum �0.

V. MAGNETIC FLUX IN THE VICINITY OF A BEND IN A
DOMAIN WALL

In this section, we derive the central result of this work,
viz., that an individual bend in a domain wall is accompanied
by a nonintegral amount of magnetic flux that penetrates the
superconductor near the bend; the amount, which we term the
bend flux, depends on the geometry of the bend. In the limit
in which the in-plane crystalline anisotropy is negligible (i.e.,
the isotropic limit), the bend flux is proportional to the angle
through which the domain wall bends.

We derive the bend flux via two approaches. In the first,
we analyze a bending domain wall via the effective theory
of the topological variables, developed in Sec. IV. We then
consider an alternative derivation, which, in the isotropic limit,
yields the bend flux quite generally, without reliance on the
assumption of either the standard or the extended London limit,

or even on the validity of the Ginzburg-Landau expansion
of the free energy. We end this section by considering
modifications of the isotropic-limit bend flux result that would
arise in settings of other pairing symmetries and/or tetragonal
or hexagonal departures from the limit of crystalline isotropy.

A. Comparison with a spatially extended Josephson junction

Before establishing the existence of bend flux, we give a
discussion of the the essential differences between, on the one
hand, a system comprising a domain wall and the supercon-
ducting regions of opposing chirality separated by it, and, on
the other hand, a system of a spatially extended Josephson
junction and two regions of conventional superconductivity
coupled by it. For the extended Josephson-junction system, it
is possible to define a variable analogous to the domain-wall
variable �(s), i.e., the local value �J(s) := [−θ1(s) + θ2(s)]/2
of (half of the) the difference between the phases θ1(s) and
θ2(s) of the superconducting regions that lie on either side of
the junction. The important distinction between � and �J is
that whereas �J transforms trivially under in-plane rotations,
� transforms nontrivially.

This observation has important implications if we compare
the local energy of a domain wall Edw with the Josephson
energy EJ of an extended Josephson junction. In particular,
for the extended Josephson junction, EJ is a periodic function
of �J alone. For the domain-wall system, on the other hand,
in order to preserve the SO(2)z invariance of the free energy,
the local energy-density of the domain wall must be a periodic
function of the difference � − φ [in which φ is determined by
the local direction of the domain-wall normal; see Eq. (12)].
Thus, because they have distinct values of φ, two segments
of straight domain wall separated by a bend will generically
have distinct equilibrium values of �. This stands in contrast
with the case of the spatially extended Josephson junction
with a bend, the equilibrium value of �J being independent of
position along the junction. As we shall now see, the bend flux
originates in this variation of the equilibrium value of � on
either side of a bend.

B. Bend flux in terms of topological variables

We now turn to the derivation of the bend flux within the
special context of the effective theory for topological variables,
developed in the previous section. Part of the utility of this
effective theory is that it allows for an efficient calculation
of the magnetic response of the superconductor, given a
configuration of the topological variables, viz., the position and
strength of the vortices, the positions of the domain-wall lines,
and the value of �(s) along each such line. Thus, our approach
will be to consider a specified configuration of topological
variables without vortices but with a single, fixed domain wall
having a bend and a specified form for �(s) along it, and then
to employ Eq. (31) in order to determine the corresponding
magnetization density.

We define the position of the domain wall using three line
segments: an arc of � radians and unit radius of curvature,
and two straight segments that continue tangentially from
each of the end points of the arc (see Fig. 5). Given this
particular geometry, we say that the resulting domain wall
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FIG. 5. (Color online) (a) “Monopole” and (b) “dipole” contributions to the magnetic field associated with a bending domain wall (oriented
black line) for a bend angle of π/3, considered in the extended London limit [see Eq. (32)]. The z-axis magnetic field M(r) is plotted as a
function of position (color scale and contour lines). For this example, the Ginzburg-Landau (G-L) parameters are taken to have the values
μ = 0.2 and τ = 1. The penetration depth defines the unit length scale. The chirality is positive to the left of the domain wall and negative to the
right of it, so that, via Eq. (12), we see that the domain wall has the indicated orientation. The dipole contribution produces no net magnetic flux
through contours that surround the bend many penetration depths away, and cross the domain wall along locally identical paths. The monopole
contribution produces a net flux 2�0/3 through such contours, independent of the G-L parameters μ and τ that control the magnitude of the
chiral currents that flow along the domain-wall core.

has a bend angle of � in it. Our next assumption concerns the
form of �(s). In Appendix A, we give a variational analysis
that suggests that, for a straight domain wall, the equilibrium
value of � is φ. To generalize to the situation in which
the domain wall bends, we assume that � follows the local
direction of the domain wall adiabatically, i.e., �(s) = φ(s).
In this case, because ∂s�(s) is not everywhere zero, a monopole
contribution to the domain-wall vorticity arises [see Eqs. (25c)
and (26a)] in addition to the dipole contribution. Figure 5
shows both the monopole and dipole contributions to the
magnetic field, evaluated using Eq. (31).

Next, we determine the total flux �var,bend associated with
the bent domain wall furnished by this variational calculation.
To do this, we integrate the total magnetic field through a
large circular disk � centered at the vertex formed by the
extrapolation of the straight-line segments, so that the straight-
line segments lie radial to the disk. In the limit that the disk
radius is much larger than the penetration depth, we find that
the dipole contribution to �var,bend tends to zero, whereas the
monopole contribution is nonzero, tending to the following
total flux:

�var,bend =
∫

�

d2r M(x) = 2
∫

d�(s) = 2�, (35)

i.e., the net flux is simply given by twice the bend angle,
regardless of how �(s) interpolates between its limiting values
far from the bend. In particular, for the case shown in Fig. 5
(i.e., for � = π/3), the bend flux is 2π/3, i.e., the dimensionful

value is �0/3, which is a nonintegral multiple of the flux
quantum.

C. General analysis for the bend flux

In the remainder of this section, we consider a more
general context in which the existence of bend flux can be
demonstrated. In particular, we need not employ the extended
London limit nor assume that the superconductor is in the
Ginzburg-Landau regime. Rather, the central assumption is
that the superconducting order has the following essential
feature: in regions in which the chirality is maximal, local
SO(2)z rotations of the superconducting order can equally
well be accomplished via U(1) gauge transformations, so
that the local transformation [α, − sgn(β) α] ∈ U(1) × SO(2)z
acts trivially on the superconducting order parameter. If
this assumption holds, then, provided the amplitude of the
superconducting order is spatially homogeneous away from
the domain wall, the unconventional superfluid velocity V ,
defined via

V := ∇θ − sgn(β) ∇γ − A, (36)

tends to zero within a maximally chiral region, as a result of
the Meissner effect.

In deriving the bend flux, we use the following construction
to define the geometry of the domain wall. We consider a
single domain wall that is fixed to pass through three points:
the origin O, and two other points P and Q; then, we fix the
angle ∠POQ = π + �, where � is bend angle of the domain
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FIG. 6. (Color online) A bent domain wall (oriented black line)
separating two domains of opposite chirality. En route to deriving
Eq. (41), which expresses the the flux � through the area bounded
by the contour C in terms of the bend angle �, the circulation of
the unconventional superfluid velocity V [see Eq. (36)] around C is
shown to be zero. The contour C is assumed to be many penetration
depths away from the region where the domain wall bends.

wall. We take the orientation of the domain wall, as defined by
Eq. (12), to run from P to Q, and we let the points P and Q

tend to infinity. The goal of the calculation is then to determine
the net magnetic flux penetrating the superconductor in the
vicinity of the domain-wall bend. The key quantity that we use
is the circulation of V around a closed contour C encircling
the domain wall bend at a distance of many penetration depths
(see Fig. 6). Care is needed in selecting the contour C because,
in equilibrium, even for zero applied magnetic field, a domain
wall may not be translationally invariant.58 However, as the
underlying free energy is local [as is manifest in Eq. (28)] and
translationally and rotationally invariant, it is always possible
to choose two geometrically congruent regions A and B,
each straddling the domain wall but located on opposite sides
of the domain-wall bend, in which the equilibrium spatial
configurations of the superconducting order in the regions (A
and B) are related to one another via a rigid rotation and
translation (see Fig. 6). Once a pair of such regions has been
identified, we choose the contour C to cross the regions (and
hence the domain wall) on locally identical paths b1 → b3 and
a1 → a3 (i.e., on paths that are related by the same rotation
and translation as the regions are). As a result, the following
equality between line integrals holds:∫

a1→a3

dr · V =
∫

b1→b3

dr · V . (37)

By using this result, and observing that V = 0 away from the
domain wall, we see that the circulation of V around the closed
contour C is zero, i.e., ∮

C
dr · V = 0. (38)

The next step in the derivation is to consider the contour C+
(C−), which begins at the point a2 (b2) and follows C through

the positive- (negative-) chirality domain to the point b2 (a2).
The line integrals of (V + A) along C+ and C−, respectively,
measure the change in the phase of the order parameter in the
positive (negative) region from a2 to b2 (and from b2 to a2).
Thus, again using the linear relation γ = (−θ+ + θ−)/2 [i.e.,
Eq. (10)], we see that the change in � from the point b2 to the
point a2 [i.e., �� := �(a2) − �(b2)], is given by the following
formula:

�� = 1

2

∫
C+

dθ+ + 1

2

∫
C−

dθ− = 1

2

∮
C
dr · (V + A). (39)

We now examine in more detail the equilibrium value of ��.
As discussed in Sec. V A, as a consequence of the rotational
invariance of the underlying free energy, the energy (per unit
arclength) Edw of the domain wall must be a periodic function
of the combination �(s) − φ(s), in which φ(s) continues to
characterize the local direction normal to the domain wall.
Furthermore, as (up to a global phase) the configurations
having � and � + π are equivalent, the dependence of Edw on
�(s) − φ(s) has period π . Importantly, we make the following
additional assumption, viz., that the dependence of Edw on
�(s) − φ(s) has a single minimum per period.

We now observe that, by construction, region A is rotated
by an angle � relative to B (using the convention that
positive rotations are measured counterclockwise, relative
to the domain-wall orientation) as a result �φ := φ(a1) −
φ(a2) = �. Thus, with these assumptions, the equilibrium
value of �� is equal to the bend angle �, up to an integer
multiple of π , i.e.,

�� = � + nπ. (40)

By combining Eqs. (38), (39), and (40), and defining �bend to
be the bend flux (i.e., net flux through the surface defined by
the contour C), we arrive at the result that

�bend = [(�/π ) + n] �0. (41)

Because the bend flux, in the rotationally invariant limit, can
evidently be an arbitrary fraction of the flux quantum, this
result is a manifestation of the general result that broken time-
reversal invariance allows for nonquantized amounts of flux to
penetrate a superconductor, as predicted on general grounds
in Refs. 27,28,30–32 and 59. Moreover, because �(s) need
not stay locked, relative to the local domain-wall orientation
(e.g, at the bend), or owing to the presence of vortices in either
or both of the chiral domains, it makes sense that �bend be
determined only modulo �0.60

To emphasize the role of the unconventional nature of
the superconducting order in deriving Eq. (41), we make the
following comparison with a conventional superconductor. For
a conventional superconductor, the fluxoid33 through a contour
is defined as � + ∮

drag
−1
ab Jb (where g is the superfluid

density tensor, J is the current density, and � = ∮
draAa is the

flux through the contour). For a conventional superconductor,
any contour for which g remains everywhere positive definite
(i.e., for paths that are interior to the superconductor),
the fluxoid is equal to n�0 for an integer n. In deriving
Eq. (41), we choose a contour C that crosses the two regions
where J is nonzero along locally identical paths (these two
regions are labeled A and B in Fig. 6). We therefore have
that

∮
C drag

−1
ab Jb = 0. Thus, if the superconductivity were
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conventional, then the flux through the contour C would be
integral and would not depend upon the bend angle � in
contrast to Eq. (41). Thus, we see that the existence of bend flux
depends in an essential way on the unconventional nature of the
superconducting order. In the next section, we expand upon
this analysis, examining bend flux in the context of various
other pairing and crystalline symmetries.

D. Bend fluxes for other pairing and crystalline symmetries

In this paper, we have assumed that the superconducting
order transforms as one particular representation of SO(2)z.
We now obtain the generalization of the formula for the bend
flux [Eq. (41)] that remains valid for arbitrary irreducible
representations, which can be indexed in terms of an integer m

(see, e.g., Ref. 61). For brevity’s sake, we refer to the m = 1
case as p wave (which is the case focused on in this paper) and
the m = 2 case as d wave. En route to generalizing Eq. (41)
to arbitrary m, we assume that transformations of the form
[m α, − sgn(β) α] ∈ U(1) × SO(2)z act trivially on a uniform,
maximally chiral phase. Under this assumption, and repeating
the line of argument given in Sec. V C, mutatis mutandis, the
bend flux formula becomes

�bend,m = [(m�/π ) + n] �0. (42)

Another version of Eq. (41) results when we address the
setting of tetragonal D4h symmetry (which is, of course,
discrete). In this case, the argument given in Sec. V C leading
to Eq. (41) holds only for � = ±π/2, for which the minimum
net flux through the domain-wall bend in the p-wave case is
�0/2; this is distinct from a conventional vortex, for which the
net flux is �0. In contrast, for the d-wave case and � = ±π/2,
a net flux of n�0 (with n integral) penetrates the bend. As a
last observation, we note that for p-wave pairing and D6h

symmetry and a domain-wall bend angle of π/3, the smallest
positive net flux accompanying the bend is �0/3, whereas the
smallest negative net flux accompanying it is −2�0/3.

Now that we have established that, in various settings,
one anticipates that a bent domain wall is accompanied by
nonintegral net magnetic flux, we shall, in the next section,
explore a range of experimental situations in which such effects
might be observable.

VI. EXPERIMENTAL IMPLICATIONS

We now describe three experimental scenarios in which
it may prove possible to observe, via scanning magnetic
microscopy, the phenomenon of sample penetration by non-
integral net magnetic flux associated with bends in walls
separating regions of opposing chiral superconducting order.
These scenarios are depicted schematically in Figs. 7, 8,
and 9. Augmenting the bend flux phenomenon, which is the
primary focus of this paper, it is known that domain walls
are expected to produce Ampère magnetic fields, resulting
from chiral currents that flow along the cores of domain
walls; see Refs. 15 and 19. Such Ampère magnetic fields, and
the magnetic fields that result from the associated screening
currents, constitute the dipole contribution to the magnetic
field shown in Fig. 5(b). We emphasize that, even if there
were a specific, microscopic reason for the magnitude of such

FIG. 7. (Color online) Schematic depiction of a chiral domain
wall running along an ab-face of a superconductor and pinned to
various locations. The wall is indicated by the oriented black line
[the orientation is defined by Eq. (12)]. We assume that deviations
from SO(2)z symmetry are sufficiently small that the arrangement
of the pinning sites determines the path of the domain wall. Large
(orange) dots denote pinning sites. Near them, the domain-wall bends
and flux penetrate the superconductor. The specified positive angles
{�i} express the geometry of the bends, as indicated. The bend fluxes
are then determined via Eq. (41). For each bend, we have chosen
the value of n in Eq. (41) to give the corresponding bend fluxes
{�i} the smallest possible magnitudes. The orientation of the flux
accompanying each bend is indicated via a small dot (up) or a cross
(down).

currents to be reduced (cf., e.g., Refs. 11,20, and 21), e.g.,
below currently detectable levels,18 such a reduction would not
affect the existence or magnitude of the bend fluxes discussed
here, which are fixed by symmetry. Thus, it is perhaps useful to
regard bend fluxes as providing a robust magnetic signature of
domain walls, alternate to the magnetic signature of the chiral
currents themselves.

= Φ0

= Φ0/2

= 3Φ0/2

+

+

-

-
FIG. 8. (Color online) Schematic depiction of an array of domain

walls (oriented black lines), each intersecting an ab-face of a
superconductor. D4h deviations from SO(2)z symmetry are assumed
to be large enough to pin domain walls to lie along specific
crystallographic directions, and each domain wall is assumed to have
a π/2 bend. Integral-flux vortices [intermediate size (orange) dots]
penetrate the superconductor along the straight sections of the domain
walls. At each bend, a bend flux penetrates the superconductor [large
and small (orange) dots] and is fixed, via Eq. (41), to be a half-integer
multiple of the flux quantum. All regions of localized flux are shown
as if they had the same sign, as would be energetically favorable in
the presence of a magnetic field applied along the z axis.
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+
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Φ = Φ0/2

FIG. 9. (Color online) Schematic depiction of an annular sample
(shaded gray), the thickness and height of which is larger that the
penetration depth. The annulus is crossed radially by a pair of domain
walls oriented at π/2 relative to one another. Tetragonal D4h terms
in the free energy are assumed to be large enough to pin the direction
of the domain walls to crystallographically lie along the specified
directions. The minimum magnitude of the total flux through the hole
would then be �0/2.

As a first scenario, consider a domain wall that intersects
a physical surface of the superconducting system, the surface
being oriented perpendicular to the z axis. In this paper, we
are neglecting effects resulting from the finite height above
the sample surface at which magnetic fields would typically be
detected. (For a discussion of such effects see, e.g., Ref. 62.) In
addition, we envision domain walls to be pinned at generically
located sites, e.g., by impurities. In the limit in which the
bulk terms in the free energy that break SO(2)z symmetry are
small (as can hold near Tc), the spatial arrangement of these
pinning sites predominates in determining the bend angles
that characterize a domain wall as it traverses the sample.
Assuming that these pinning sites are spaced further apart
than the penetration depth, Eq. (41) indicates that these pinning
locations would show up in scanning magnetometery as local
regions of nonintegral flux penetrating the superconductor (see
Fig. 7).

We now outline a scenario specific to Sr2RuO4. In both
zero and nonzero in-plane magnetic fields, scanning magnetic
imaging of Sr2RuO4 shows that vortices arrange themselves in
linelike structures.16,18,63,64 One of the possible scenarios put
forth to explain these structures is that the linelike structures
are due to the binding of vortices to a parallel array of chiral
domain walls.28 However, to date, the linelike structures have
not exhibited characteristics that would uniquely identify them
as domain walls because, to within experimental uncertainty,
the vortices (i.e., the local regions of penetrating magnetic
field) were observed to have total fluxes that were integer
multiples of �0, and Ampère magnetic fields along the linelike
features were not observed. The phenomenon of bend flux
provides an additional route for determining whether the
observed linelike structures are indeed associated with domain
walls. If it proves possible to prepare a sample (e.g., via a
field-sweep procedure) so that the linelike features are bent,
then, if the linelike structures do indeed correspond to domain
walls, bends would be accompanied by a nonintegral flux
penetrating the superconductor (see Fig. 8). The observation
of nonintegral bend flux at a π/2 bend would provide further
confirmation of p-wave pairing in Sr2RuO4 because, as noted
in Sec. V D, d-wave pairing would produce integer bend flux.
However, the fact that Refs. 16,63, and 64 do not report

regions of nonintegral localized flux suggests that, in these
experiments, if there are domain walls, then they are aligned
in parallel arrays, and thus are not bent.

A further consequence of domain walls should be evident
in annular rings of broken time-reversal symmetry supercon-
ductors. As the analysis leading to Eq. (41) is local only
to the contour C, and does not require inspection of the
superconductivity near the domain-wall bend itself, it can
be generalized to the case in which the bend is replaced
by a hole in the superconductivity (see Fig. 9). Recently,
evidence for half-integer fluxoid behavior has been obtained in
experiments on mesoscopic rings of Sr2RuO4 using cantilever
torque magnetometry.5 However, in those experiments, the
half-integer fluxoid behavior was found to be accompanied
by a small, rotationally invariant, in-plane component of the
magnetization, and we are not aware of any reason why such a
magnetization component would arise in the context of domain
walls.

VII. CONCLUDING REMARKS

We have analyzed the properties of unconventional super-
conductors in which the superconducting state spontaneously
breaks time-reversal symmetry and thus have the potential
to exhibit domain walls that separate regions of opposing
order-parameter chirality. By employing an extension of the
well-known London limit of the superconducting state, we
have formulated an effective theory in terms of the topological
variables that describe vortices and domain walls of the order
parameter. We have used this effective-theory formulation
to show that, localized near any bend in a domain wall
through an angle �, there is an associated net magnetic flux
[(�/π ) + n] �0 (for some integer n), provided the system
can be taken to be rotationally invariant, crystallographically,
about the z axis. We have also shown that this result for
the flux near a domain-wall bend holds more generally.
Neither the London limit nor the regime of validity of the
Ginzburg-Landau theory are required. Rather, it is sufficient
for the following condition to hold: Within regions of maximal
chirality, the two transformations, SO(2)z rotations and U(1)
gauge transformations, of the superconduction order parameter
are degenerate transformations, in the sense that they have
equivalent impacts on the state of the superconductivity.

We have addressed the issue of the relaxation of the
assumption of crystallographic rotational invariance and its
replacement by discrete rotational invariance. In this regime,
we have found that the result for the bend flux continues to
hold, but only for specific values of the bend angle that are
determined by the crystalline symmetry.

We have also sketched three candidate settings in which
the interplay between chiral-domain-wall geometry and mag-
netic flux discussed in this paper might be observable, e.g.,
in experiments using scanned-probe magnetic imaging. We
emphasize that the magnitude of the flux that is associated
with a bend in a domain wall is fixed by symmetry and is
independent of the the magnitude of the chiral-charge currents
that are proposed to flow along the cores of domain walls. Thus,
it is perhaps useful to regard such “bend flux” as providing a
robust magnetic signature of domain walls, and hence the form
of superconductivity that spontaneously breaks time-reversal
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symmetry. The analysis that we have presented may be of
use in determining the existence and distribution of domain
walls in various superconducting materials such as Sr2RuO4,
and may thus be of use in resolving the question of whether
superconductivity in Sr2RuO4 does indeed spontaneously
break time-reversal symmetry. Aside from its intrinsic interest,
resolving this question would, inter alia, be valuable in
assessing the utility of materials such as these for exhibiting
non-Abelian phases and Majorana modes and, hence, the
robustness with respect to decoherence that could prove useful
for quantum information processing purposes.
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APPENDIX A: FREE ENERGY OF A TRANSLATIONALLY
INVARIANT DOMAIN WALL

In this Appendix, we use a variational approach to derive
an estimate for the free energy per unit length Edw of a
translationally invariant domain wall, starting from the free
energy FEL (in the extended London limit), given in Eq. (30).
(Similar calculations can be found throughout the literature;
see, e.g., Refs. 19,21,25,27,28,65, and 66.) As we discussed in
Sec. IV, FEL contains two contributions: one, fcore, due to the
core energy of a domain wall, which we estimate variationally;
and the other, the London term, that describes both the kinetic
energy of supercurrents and the magnetic field energy. In order
to express fcore compactly, we define (α1,α2) = (γ,β), and,
thus, fcore becomes

fcore = 1

2
∇a αiϒaibj ∇bαj + 1

8L2
cos2 β, (A1a)

ϒaicj := 1

4
Iab

(
4 cos2 β 0

0 1 − μ2 cos2 β − τ 2

4

)
ij

− τ cos β

8
Mγ−(π/4)

ab

(
4 0

0 1 − 2μ

)
ij

+ μ sin 2β

4
Eab Eij , (A1b)

where repeated indices {a,b,i,j} are summed from 1 to 2. The
approach taken in this appendix is to evaluate independently
the two contributions to Eq. (30), expressing separately the
variational estimate for the core energy per unit length Ecore

and the London energy per unit length EL, and then to add
these contributions to determine Edw.

To derive the variational estimate, we make the following
assumptions for the spatial dependence of the γ and β

fields transverse to the domain wall: we take γ to be
constant and equal to �, and we take β(x) to be equal to
β�(x) := 2 tan−1 tanh(x/2�), where � is a variational parameter
specifying the width of the domain wall. [To motivate the form

β�, we note that, for (μ,τ ) = (0,0) and γ constant, the term
fcore reduces to 1

8 |∇β|2 + L−2

8 cos2 β, and this form has the
property of being stationary at β�(x), provided � = L.]

By using the variational assumptions for γ and β, we obtain
the following expressions for Ecore, which depends upon �

and � as well as the angle φ [which specifies the direction
n̂ = (cos φ, sin φ) normal to the domain wall]:

Ecore(�,φ,�)

= 1

�

[
�2

4L2
+ 1

4
− μ2

6
− τ 2

16

+
(π μτ

16
− π τ

32

)
cos[2(� − φ)]

]
. (A2)

By minimizing Ecore with respect to �, we see that, in the
extended London limit (for which L tends to zero), the value
of � that makes Edw stationary would also tend to zero,
provided the other energetic contribution EL does not force the
stationary value of � away from this result. To see that indeed
EL does not do this, using the same variational assumptions
for γ and β, we examine EL expressed as power series in � to
O(�0):

EL(�,φ,�) = 1

�

(
μ2

6
+ τ 2

32
− π μτ

16
cos 2(� − φ)

+ τ 2

32
cos 4(� − φ) + O(�)

)
. (A3)

By combining the two terms Ecore and EL, we arrive at the
following variational expression for the free energy per unit
length of a translationally invariant domain wall:

Edw(�,φ,�) = 1

4�

(
�2

L2
+ 1 − τ 2

8
− π τ

8
cos 2(� − φ)

+ τ 2

8
cos 4(� − φ) + O(�)

)
. (A4)

By minimizing Edw with respect to �, and recalling that in the
extended London limit L is small, we find the stationary value
of � to be proportional to L, consistent with the assumption,
just made, that � is also small in the extended London limit.
Then, by replacing � by its stationary value, one obtains a
value for Edw having the following properties, some of which
we make use in Sec. V: (i) it depends on � and φ only through
the combination � − φ and is π periodic in this quantity;
(ii) it is independent of μ (to leading order in L); and
(iii) when τ � π/4, the values of � that minimize min� Edw

are φ + nπ (for integer n).

APPENDIX B: FREE ENERGY IN TERMS OF
TOPOLOGICAL VARIABLES FOR THE CASE OF

CONVENTIONAL SUPERCONDUCTIVITY

To motivate the derivation of the effective free energy for
the topological variables given in Sec. IV of the main text,
resulting in Eq. (30), we review in detail how it would proceed
in the simpler setting of conventional superconductivity, and
without employing the dual approach. For a conventional
superconductor, the order parameter is the complex scalar field
ψ(r). We assume that, in the absence of a magnetic field, the
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system is translationally and rotationally invariant, and we
consider magnetic fields that are oriented along the z direction
and states of the superconductivity that are homogeneous in
the z direction. In addition, we work with dependent and
independent variables that have been rendered dimensionless
via the rescalings given in Sec. II.

With these assumptions, we begin this derivation with the
Ginzburg-Landau free energy per unit length of sample

F [ψ,A,H] := 1

2

∫
d2r

(
|(∇ − i A)ψ)|2 + κ2

2
(|ψ |2 − 1)2

+ |(∇ × A) − H|2
)

. (B1)

In the London limit, in which κ → ∞, the potential terms
of this free energy fix the magnitude of ψ to be unity. Then,
ψ can be parametrized via a U(1) phase field θ (r), so that
ψ(r) → exp iθ (r). Making this replacement in the free energy,
we obtain the London form of the free energy, i.e.,

1

2

∫
d2r(|∇θ − A|2 + |(∇ × A) − H|2). (B2)

The two terms in the London free energy can be regarded
as frustrating one another, energetically, as they impose
competing demands on the A field. The first term favors
the transverse (i.e., divergence-free) part of A to be zero, the
θ field can compensating for any longitudinal (i.e., curl-free)
part; in contrast, the second term favors the transverse part of
A to be nonzero.

For type-II superconductors at magnetic fields above the
lower critical field, a partial resolution to this frustration comes
from the introduction of vortices, which alter the structure of
the θ field: θ becomes multivalued, and is singular in the cores
of the vortices. In particular, the expression ∇θ is not curl free
and, correspondingly, has a transverse part.

To derive the effective free energy in terms of the appropri-
ate topological variables (in this case, the density of vortices),
one now decomposes the θ field into a smooth, single-valued
part θsm and a part θv that contains the vortex singularities, so
that θ = θsm + θv. Next, one seeks to eliminate θsm from the
free energy by setting it to the value that makes the free energy
stationary. As the only term in the free energy that depends
on θsm is the one corresponding to the kinetic energy of the
supercurrents [i.e., the former term in Eq. (B2)], for the issue
of stationarity one need only consider this term. By expanding
it and integrating by parts gives

∫
d2r

(
1

2
θsm(−∇2)θsm − θsm∇ · (∇θv − A)

+ 1

2
|∇θv − A|2

)
. (B3)

Then, using the Green’s function for the Laplacian in two
dimensions, which obeys −∇2G(r) = δ(r) and reads G(r) =
−(2π )−1 ln |r|, one finds that, at stationarity, θsm is given by

θ̄sm(r′) = −
∫

d2r G(r′ − r)∇ · [∇θv(r) − A(r)]. (B4)

By inserting θ̄sm into Eq. (B3) and using the defining equation
for G(r) to express the last term of Eq. (B3) in terms of G, one
obtains, for the kinetic energy of the supercurrent,

1

2

∫
d2r d2r ′ {−[∇a(∇aθv − Aa)(r)] G(r − r ′)

× [∇′
b(∇′

bθv − Aa)(r ′)] + [(∇aθv − Aa)(r)]

× [−∇2G(r − r ′)][(∇′
aθv − Aa)(r ′)]}. (B5)

The two terms in this equation have similar structure, and
integration by parts allows them to be expressed as

1

2

∫
d2r d2r ′ (IabIcd − IadIbc)(∇aθv − Aa)(r)

× [∇b∇cG(r − r ′)][(∇′
dθv − Ad )(r ′)]. (B6)

Next, by using the elementary tensor identity

Iab Icd − Iad Ibc = Eac Ebd (B7)

and integrating by parts, the supercurrent kinetic energy
becomes

1

2

∫
d2r d2r ′ {Eab [∇a(∇bθv − Aa)(r)]

×G(r − r ′) Ecd [∇′
c(∇′

dθv − Aa)(r ′)]}. (B8)

This form shows that the elimination of the smooth part of
θ creates a long-ranged interaction for the curl of ∇θv − A.
This free energy can readily be shown to be equivalent to
Eq. (23) and, thus, to describe the kinetic energy of the
transverse part of the supercurrent. Equation (B8) features the
curl of the gradient of the multivalued function θv, which is
a combination that isolates the δ-function contributions from
the singularities in the vortex cores, so that

Eab∇a∇bθv = 2π ρv, (B9)

where ρv(r) := ∑
qνδ(r − Rν) defines the vortex density in

terms of the vortex locations {Rν} and vorticity {qν}. In
particular, one sees that, owing to the vortices, the gradient
of θ can possess a transverse part, and this can partially relieve
the frustration of A inherent in the London free energy.

To proceed further with the derivation of the effective free
energy in terms of vortex variables, one now considers the full
London free energy [Eq. (B2)], which, in terms of the total
magnetic field B = Eab∇aAb, reads as

1

2

∫
d2r d2r ′ (2πρv − B)(r)G(r − r ′)

× (2πρv − B)(r ′) + 1

2

∫
d2r (B − H )2. (B10)

Note that we have omitted a constant contribution resulting
from the suppression of the magnitude of the order parameter
within the core of each vortex, as it is negligibly small relative
to the kinetic and field energies in the London limit.

The next step is to eliminate the magnetic field from the
free energy by setting it to its stationary value B̄ which, from
Eq. (B10), one sees as

B̄(r) =
∫

d2r ′ (G + δ)−1(r − r′)

×
(

H (r′) + 2π

∫
d2r ′′ G(r′ − r′′) ρ(r′′)

)
, (B11)
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where (G + δ)−1(r − r′) is the inverse of the kernel G(r −
r′) + δ(r − r′). It is convenient to adopt a schematic notation
in which one suppresses integral signs and dependences on
spatial variables, in which case the result for B̄ reads as

B̄ = (G + δ)−1(H + 2π Gρ). (B12)

Replacing B by B̄ in Eq. (B10) then yields the following
expression for the free energy:

1
2 {(2πρ)[G − G(G + δ)−1G](2πρ) + H [δ − (G + δ)−1]

×H − H (G + δ)−1G(2πρ) − (2πρ)G(G + δ)−1H }.
(B13)

It is straightforward to see that each of the four integral kernels
in this formula is the Green’s function for the Helmholtz
operator in two dimensions, which obeys (−∇2 + 1)G(r) =
δ(r), and is given by G(r) = (2π )−1K0(|r|), where K0(x) is a

modified Bessel function. To exemplify this, one can apply the
following elementary manipulations to the kernel of the first
term:

G − G(G + δ)−1 G

= G {δ − [−∇2(G + δ)]−1}
= G [(−∇2 + δ)G − G] = G (−∇2)G = G. (B14)

By similarly simplifying the remaining kernels in Eq. (B13),
one completes the derivation of the effective free energy in
terms of the vortex density ρv and the applied field H , arriving
at the result

1

4π

∫
d2r d2r ′ (2πρv − H )(r) K0(|r − r ′|) (2πρv − H )(r ′),

(B15)

which is the analog for conventional superconductivity of the
unconventional superconductivity formula Eq. (30).
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