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Abstract — Spatial heterogeneity in the elastic properties of soft random solids is examined via
a semi-microscopic model network using replica statistical mechanics. The elastic heterogeneity
is characterized by random residual stress and Lamé coefficient fields, and the statistics of these
quantities is inferred. Correlations involving the residual-stress field are found to be long ranged
and governed by a universal parameter that also gives the mean shear modulus.
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Introduction. — As a consequence of randomness
incorporated at synthesis, random solids (e.g. polymer
networks, glasses, a-Si) are heterogeneous. For example,
the mean positions of the constituent particles exhibit no
apparent long-range order, and every particle inhabits a
unique spatial environment. Particularly for soft random
solids, such as rubber, in which the particle positions
undergo large thermal fluctuations, heterogeneity also
manifests itself via the RMS particle displacements, which
are random and continuously distributed [1-3].

The elasticity of rubber, and especially its softness
with respect to shear deformations, have been studied
for many years via the classical theory, developed by
Kuhn, Flory, Wall, Treloar and others [4] and based on
a microscopic picture of Gaussian polymer chains. While
the classical theory has proved highly successful, it is
a homogeneous theory, preserving no information about
the random structure. Thus, it is incapable of describing
consequences of the heterogeneity, such as random spatial
variations in the local elastic parameters, or nonaffine local
strain response to macroscopic stress [5-7].

In this, letter we present a theoretical development
that goes beyond the classical theory of rubber elasticity
by accounting for the heterogeneity. What emerges
is an elasticity theory featuring spatially fluctuating
Lamé coefficients and residual stresses, together with a
statistical characterization of these quantities in terms of
their mean values and spatial self- and cross-correlations.
In particular, we find that not only is the stress-stress

correlation long ranged —behavior that can be argued
for on general grounds— but so are the cross-correlation
between the residual stress and, e.g., the shear modulus.
By contrast, we find the self-correlation of the shear
modulus to be short ranged. Furthermore, we find that
the long-ranged correlations and the average shear modu-
lus are governed by a common universal parameter that
is independent of microscopic details.

To obtain our statistical characterization of soft random
solids we take the following route. First, we examine a
nonlocal phenomenological model of a random elastic
medium, which we subsequently derive from a semi-
microscopic model. We then determine the state to which
it relaxes when randomness is present, and re-expand the
elastic free energy around this new equilibrium reference
state!. This relaxed state is, however, still randomly
stressed [9]; nevertheless, the stress in the relaxed state
—the so-called residual stress— satisfies the mechanical
equilibrium condition 0;0;1(x) =0. In its local limit, the
proposed phenomenological model reproduces a version of
Lagrangian elasticity theory that features random Lamé
coefficients and residual stresses. Second, we consider the
statistical mechanics of a minimal semi-microscopic model
of a random-solid-forming system —the randomly linked
particle model (RLPM) [10]. Via the replica method,
applied to the RLPM to deal with its structural random-
ness, followed by an analysis of Goldstone fluctuations

LA similar construction was employed in ref. [8].
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of the random solid state of the RLPM, we arrive at
precisely the aforementioned nonlocal phenomenological
model, except that the latter has been appropriately
disorder-averaged using replicas. By comparing these
two disorder-averaged models, we characterize the elastic
heterogeneity of soft random solids.

Phenomenological model. — We begin by examining
a nonlocal model for the elastic free energy I' of soft
random solids, which we shall ultimately derive from the
RLPM. This model is in the spirit of the classical theory
of rubber elasticity, in that it describes “mass points”
(i.e. coarse-grained volume elements) that interact with
one another through random harmonic attractions:

= %/dzl dzs G(thz){’R(zl) - R(22)|2 — |z _22‘2}
+%)\0/dz(|8R(z)|—1)2, (1)

i.e., a functional of the deformation of the system R(z),
which specifies the D-dimensional position to which the
mass point at position z is displaced. |[0R(z)| denotes the
determinant of the deformation gradient tensor dR;/0z;
and, correspondingly, the parameter \g, which we take to
be large, heavily penalizes density variations. It results
from a competition between i) repulsions (either direct or
mediated via solvent, e.g., excluded-volume) and ii) inter-
molecular attractions and external pressure. The nonlocal
kernel G(z1,22) describes link-induced harmonic attrac-
tions between mass points, originating in the entropy
of the molecular chains of the heterogeneous network,
and are modeled as “zero-rest-length” springs of random
spring coefficient. G(z1,22) is taken to be a quenched
random function of the two positions, z; and z3, symmet-
ric under z1 < 2s.

The free energy I is not stable at the state R(z) = z for
two reasons: first, the attraction G causes a small, spatially
uniform contraction (the fractional volume change being
O(1/X0)); second, the randomness of G additionally desta-
bilizes this contracted state, causing the adoption of a
randomly deformed equilibrium state. We denote this
relaxation as z — 2=z +v(z), in which ¢ describes the
uniform contraction, and v(z) describes the random local
deformation. This process can be understood in the setting
of the preparation of a sample of rubber via instanta-
neous crosslinking: crosslinking not only drives the liquid-
to-random-solid transition but also generates a uniform
inward pressure, as well as introducing random stresses.
As a result, immediately after crosslinking the state is
not stable, but relaxes into a new equilibrium state deter-
mined by the particular realization of randomness created
by the crosslinking. Free-energy stationarity applied to
eq. (1) shows that at large ¢ the contraction ¢ is given
by (~1—(p/DAg), where

1

p= 5 /d22 (21 - 22)2 Go(z1 - 22), (2)

and Go(z1 — 22) =[G(21,22)] is the disorder average
(denoted by [---]) of G, and we have assumed that this
disorder-averaged G is translationally and rotationally
invariant. As we shall see below, p is actually the mean
shear modulus.

The random relaxation v(z) is difficult to determine,
owing to the large nonlinearity from the Ay term. However,
by assuming that G; =G — Gy (the random part of G) is
small, and seeking v(z) to first order, free-energy mini-
mization 6I"/dv(z) = 0 enforces that the Fourier transform

v(p) = fdz exp(—ipz) v(z) is given by

PL(p)- f(p)
Xop?+2(Go(0)—Go(p))’

where f(z) =—2¢ [dz1 Gi(2,21) (z—21), and Pji(p) =
p; pr/p? and 77};c (p) =01, — ’P;fk (p) are, respectively, trans-
verse and longitudinal projector, and j, k, etc. are
Cartesian indices.

Next, we transform to a new reference state, which we
take to be the relaxed state, via the coordinate trans-
formation z — Z(z) = (z + v(z) (with inverse z(2)). Corre-
spondingly, we obtain the relaxed-state kernel G (21, %) =
G(z(%1), 2(%2)) and, recalling the assumption that G (and

3)

hence v) is small, we observe that G can be expanded in
v to yield G explicitly. We then re-expand the elastic free
energy as a functional of the deformation R(Z) =z + a(2)
around the new reference state, keeping terms to quadratic
order in the nonlinear Lagrangian strain tensor ;;(2) =
L((0R;/0%;)(OR,/0zy) — §;1,) and to sub-leading order in
1/Xo. By considering the local limit of the resulting free
energy via a gradient expansion, and dropping an additive
constant, we arrive at

:/dg{T”@) EG3) + p(5)Tra(3)2+ 22

)(Tr £(z ))2}
(4)
This free energy features three random elements: the
heterogeneous Lamé coefficients p(Z) and A(Z) and the
residual stress o, (Z); respectively, they are given by

w(p) =p3(p) —i¢~'p (B f(P)), (5a)
AB) = 2o 8(p) +2(iC "D (B F(5)) —p3(P),  (5b)
P o p-f(P)
Ujk(P)Z—m inGl(p_%Q)"_l(sﬂc Rz
+ 2 (B P () + PPy (P)) fu(B), (5¢)
where 3(p)= @m)P6 (p). It can be shown that o obeys the

equilibrium condition 9;0;;(Z) =0 (see footnote?). Note

2Strictly speaking, the residual stress o, defined here, is the
leading-order term of the true stress, in the sense of a gradient
expansion, owing to the nonlocality of our model. As a result, the
equilibrium condition only holds to the corresponding order in the
gradient expansion.
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that the randomness of the coefficients in egs. (5) is
determined by G; (either indirectly via v, or else directly).

To determine the statistics of G, we first treat the
statistical mechanics of elastic fluctuations governed by
eq. (1) using replicas. (We explain why this procedure is
appropriate, below, before eq. (15).) Thus, we arrive at
the disorder-averaged replicated partition function

2= [T or e (-Tw/1). ©

where we have set kg =1 and « labels replicas; [Z"] is
related to the disorder-averaged Gibbs free energy via

—[T)/T = 8, n[Z"]|n—0.

exp (—

(7)

The resulting effective pure free energy is

= %/z ; ( ‘aRO‘| - ]_)2+ %/ [G(Zl,ZQ)] lIIR(Zl,ZQ)

{z:i}

1
37 (G(21,22)G (23, 24)|c VR (21, 22) Y R(23, 24)+- - -
{zi}

, (8)

where the subscripts {z;} indicate integration variables,

“c” indicates a cumulant (or connected correlator), and
n

Z{\RD‘ 21)

a=1
The disorder averages [G(z1, z2)] and [G(z1, 22) G (23, 24)]c
are the first and second cumulants of the random nonlocal
kernel G(z1,22), and the dots represent terms arising
from higher-order cumulants, which characterize the non-
Gaussian nature of the distribution of G.

Up(z1,22) RQ(Z2)\2*|21*22|2}-

Semi-microscopic model. — Our next goal is to
determine the cumulants via the analysis of a semi-
microscopic model. Thus, we consider the randomly linked
particle model (RLPM) [10], which serves as a conve-
nient minimal model of soft random solids, inasmuch
as it adequately captures the necessary long-wavelength
physics. The RLPM consists of N particles having coor-
dinates {cj ', interacting via an excluded-volume term,
all in a ﬂuctuatlng volume V', the mean value of which is
controlled by a pressure p. In addition, permanent soft
links, modeled as “zero-rest-length” springs, are intro-
duced at random, with a separation-dependent probabil-
ity, between particles in a liquid-state configuration, so
that the number of links is quasi-Poisson-distributed and
the correlations among the links are consistent with the
correlations of the liquid state. This is a version of the
Deam-Edwards distribution [11].

For a given realization of the randomness, the Hamil-
tonian of the RLPM is given by

HRLPM* 25 ¢ —cy)+ Z'c“;?“/

1,j=1

(10)

The first term describes excluded-volume repulsion
(v? is taken to be large and, thus, density variations
are suppressed); the second term describes attractions

associated with the M randomly chosen pairs {c;_, c;, }M,
of particles that have been softly linked to one another.

The particles of the RLPM can be identified with
small molecules or coarse-grained polymers, and the soft
links, e.g., with Gaussian molecular chains. In making this
coarse graining one is assuming that microscopic details
(e.g., the precise positions of the crosslinks on a polymer,
the internal conformational degrees of freedom of the
polymers, and the effects of entanglement) do not play
significant roles for the long-wavelength physics. In part,
these assumptions are justified by studying more detailed
models, in which the conformational degrees of freedom
of the polymers are retained [2]. Thus, the RLPM can
be regarded as a caricature of vulcanized rubber or as
a model of chemical gels or other soft random solids. It
is a model very much in the spirit of lattice percolation,
except that it naturally allows for particle motion as well
as connectivity, and is therefore suitable for the study of
continuum elasticity and other issues associated with the
(thermal or deformational) motion of particles.

The analysis of the RLPM utilizes replica field theory,
very much along the lines presented in full detail in
ref. [2]. In particular, the free energy associated with
the Hamiltonian (10) can be averaged over the quenched
randomness with the aid of the replica trick. This results
in a theory that is free of disorder but is described by an
effective Hamiltonian that involves coupled replicas of the
system. This effective Hamiltonian can then be expressed
in terms of the particle density in replicated space, and
the resulting formulation can be decoupled via a Hubbard-
Stratonovich (HS) transformation, which leads to a field-
theoretic representation. The order parameter field

. 1 " 1
(2) N; 2% —¢)) ... (0(x —ci))]—m,

which enters the model in this HS-transformed version,
is a powerful tool for characterizing the soft random
solid state. In it, £ = (2%, 2!,...,2™) denotes the (1 +n)-
fold-replicated D-vector x, and (---) denotes a thermal
average for a given realization of randomness (i.e. a given
configuration of the links) [2]. This order parameter is
capable of detecting and characterizing the random solid
state. The additional (i.e. 0th) replica arises from the
preparation ensemble associated with the Deam-Edwards
distribution of the quenched randomness; this replica has a
fixed volume V. We fix the pressure in the measurement
ensemble to equal the Inean pressure in the preparation
ensemble, i.e., p= 2V2 + &= N T This leads to the follow-

ing effective pure - dependent free energy:

NTn? . . R nv? N2
Giin = ot > AB)QP)A—D) + +npV

2BV, ik

> AG)QUp)TE

pHEHRS

—NTln/déexp (11)

n
AV
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Here, Q(p) and A(p) are, respectively, the Fourier
transforms of Q(2) and A(z) (=exp(—2%/2a?)), and

A@)=TI0_oA(z*) and Ag=A(p)|p=o. Then, the
disorder-averaged Gibbs free energy is given by
[G] = —Tlimy,—y0 Oy In [DQ exp (—G14+,,/T) . (12)

The parameter n? controls the density of links, with the
average number of links to any single particle being n?.
The restriction p € HRS serves to exclude macroscopic
density fluctuations, i.e., to account for the effects of
the strong excluded-volume interactions®. At the level of
mean-field theory, the transition from the liquid to the
random solid state occurs at n? = 1, as can readily be seen
via an expansion of G, in powers of €. For larger n?,
the equilibrium value of the order parameter is

) dz —3 {0 s - 3 P Q
Q) :Q/vo/dTp(T) e { a=1 }— AR

where 2= (z,(z,...,(z) represents the random mean posi-
tions about which replicated particles undergo thermal
fluctuations, ¢ = (V/Vp)'/? is the contraction ratio, and
Q@ and p(7) characterize the state via, respectively, the
fraction of localized particles and the distribution of
(inverse square) localization lengths. Again within mean-
field theory, @, p and ¢ are determined by self-consistency
conditions that follow from making G4, stationary; in
particular, Q obeys 1 —Q = exp(—n?Q) [1-3].

With the approach to the RLPM in place, we now
describe how the equilibrium value of the order parameter
is modified when the system undergoes an elastic deforma-
tion. In this replica theory, such deformations amount to
a replica version of Goldstone excitations. In view of the
pattern of spatial symmetry breaking, they are specified
by n (not n+1) independent long-wavelength deforma-
tion fields {R!(2), R?(z),...,R"(2)}, each depending on
a single replica of space z [12,13]*, with the constraint
det (OR*/9(¢z)) =1. This constraint corresponds to the
low-energy excitations of the model: pure shear deforma-
tions from the contracted measurement state. Hence, we
arrive at the appropriately deformed order parameter:

. dz T . 3 Q
(@)= [ [arotrexs (~7le - ROPR) - 0,
(13)
where R(z)=(z, R(2),...,R"(z)) are the random mean
positions of the particles in the preparation (a=0)

3The acronym HRS stands for Higher Replica Sector, and repre-
sents the sector of replicated momentum space in which the repli-
cated momenta p have at least two replica elements involving nonzero
D-momenta p®. HRS vectors are associated with degrees of freedom
in the field theory that characterize correlations between distinct
replicas, and can thus describe the vulcanization transition. On the
contrary, momenta p in LRS (Lower Replica Sector) have no or only
one nonzero p® element, and these are associated with single-replica
density fluctuations which, as a result of the excluded-volume inter-
actions, are not critical freedoms in the theory [2].

4This Goldstone deformation improves on [12,13], correctly giving
a shear modulus that, at long wavelengths, is insensitive to the
distribution of localization lengths.

and (deformed) measurement (a=1,...,n) replicas,
and 2? denotes Y._,|z*|>. The link density and
excluded-volume parameters will be taken to obey:
VIN/TVo>n?>1. We take n?>>>1 (and hence Q~1)
because we are concerned with the well-linked regime. As
we shall see, the condition ¥2N/TV,>>1 indicates that
the medium is near-incompressible, and v2N/TV; > n?
holds because we are concerned with soft solids, for which
the bulk modulus greatly exceeds the shear modulus.

To determine the free energy of the Goldstone deforma-
tion we insert the deformed order parameter into Giin,
thus obtaining (up to an irrelevant additive constant)

~ VN2 [V

1
—om | Ka(z1, 20,23, 24) WR(21, 22) YR(23, 24)+ - (14)

2

1

1) += [ Ki(z1,22) Yr(21,22)
242y

The kernels K;(z1,22) and Ky(21, 22, 23, 24) are given by
rather lengthy formulae in terms of 52, Q and @, but are,
in essence, bell-shaped functions of the separations of the
variables that fall off on the scale of the typical localization
length; we shall report on them elsewhere.

Results. — Observe that egs. (8) and (14) are equiva-
lent, in the sense that they both are capable of describing
the free energy (disorder-averaged via replicas) of spatially
varying deformations and homogeneous volume variations
in soft random solids, about an unrelaxed reference state
R(z) = z. This equivalence makes the RLPM a sensible
candidate for addressing the question posed above about
the statistics of G;. By comparing these two equations we
arrive at the correspondence

[G (21, 22)] = K1(21, 22), (15a)
(G (21, 22) G(23, 24)]c= K2a(21, 22, 23, 24), (15Db)
o=V N?/VE. (15¢)

Higher-order cumulants of G' may be determined via the
expansion of G[R] to higher order in Uk, as we shall
undertake elsewhere.

Now that we have ascertained information about the
statistics of GG, we use it to address the statistics of the
heterogeneous Lamé coefficients 1 and A and the residual
stress o of the relaxed state, which we do via egs. (3)
and (5). This leads to the following results for the disorder-
averaged elastic parameters:

([ox(2)], [n(2)], M) = (0,0, v°N?/V),

where the average shear modulus p is given by [14]

(16)

1 >
p=0TN/Vj, 0z—§n2Q2+e*”Q+n2Q—1. (17)

6 ~ (n? —1)3 near the transition, and 6 ~ n?/2 for n? > 1.
The variances and covariances among the Fourier trans-
forms of p, A and o at long wavelengths are given in
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Table 1: Long-wavelength variances and covariances of the
elastic properties of soft random solids in the relaxed state.
The entry in row R and column C, when multiplied by
(N/Vo)T?8(p+7p'), yields the connected disorder correlator

[R(p)C(p")]lc = [R(p)C(p")] — [R(P)[C(p")].

or(p') p(p") AP
oi;(p) 20 A 11 —40P£< (p) 897?5 (p)
pu(p) | —40P5(p) v —2y
Ap) | 80P (p) —2y 4y

table 1. In these formulae, 7 is a scalar determined by
n? and g; the tensor A is a p-dependent structure that
vanishes on contraction with p.

By transforming these variances and covariances back
to real space, one can obtain their leading large-distance
behavior. It is evident that the entities not involving the
stress o(r) (i.e. [w(0)u(r)le, [A0)A(r)le and [u(0)A(r)]c)
are short ranged in real space: more precisely, they are
proportional to ds(r) (i.e. to the Dirac delta function
smoothed on the scale of the short-distance cutoff, which
should be taken to be the typical scale for localization
length, in order to validate the Goldstone-fluctuation
framework). By contrast, those entities involving the stress
have more interesting behavior: in three dimensions and
at large scales we find that

1 N
[04(0) oxi(r)]e = = 6T% — Bjjp/7°,

1
- e (18a)

0350) u(r)l = -2 07 (PE() - 5PE0) ) /7,
(18h)

O M = 2075 (P - 5780 )/
(18¢)

independent of the particle repulsion strength v2, where
the tensor Bj;i; is a complicated structure comprising
terms built from projection operators of the vector r,
together with various index combinations. This long-
ranged correlation involving the residual stress is a result
of the relaxation due to randomness, in the incompressible
limit. The correlation of the random kernel G falls off on
the scale of typical localization length, which is regarded
as short ranged for considerations of elasticity. Relaxation
subject to the constraint of incompressibility brings the
long-ranged correlations. It is perhaps unexpected that the
correlation between the residual stress and shear modulus
is a long-ranged quantity.

By starting with a semi-microscopic model, we have
constructed a random nonlocal elasticity theory, together
with a statistical characterization of the parameters that
feature in this theory. So far, we have focused on this
statistical characterization in the local limit of the theory,
eq. (4), and have found —inter alia— that a universal
parameter 6 controls all long-range correlations. This
parameter also governs the large-distance statistics of
nonaffine deformations that occur in response to applied
stresses [8]. The statistical content and implications of the
theory can also be explored beyond the local limit. For
example, the complete statistics of the nonlocal kernel G
are amenable to the present formalism, and will allow the
construction of the statistics of the nonaffine deformations.
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