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Abstract. — Magnetic fields and magnetic impurities are each known to suppress supercon-
ductivity. However, as the field quenches (i.e. polarizes) the impurities, rich consequences,
including field-enhanced superconductivity, can emerge when both effects are present. In su-
perconducting wires and thin films this field-spin interplay is investigated via the Eilenberger-
Usadel scheme. Non-monotonic dependence of the critical current on the field (and therefore
field-enhanced superconductivity) is found to be possible, even in parameter regimes for which
the superconducting critical temperature decreases monotonically with increasing field. The
present work complements that of Kharitonov and Feigel'man (JETP Lett., 82 (2005) 421),
which predicts regimes of non-monotonic behavior of the critical temperature.

Introduction. — In their classic work, Abrikosov and Gor’kov [1] predicted that unpolar-
ized, uncorrelated magnetic impurities suppress superconductivity, due to the de-pairing ef-
fects associated with the spin-exchange scattering of electrons by magnetic impurities. Among
their results is the reduction, with increasing magnetic impurity concentration, of the critical
temperature T, along with the possibility of “gapless” superconductivity in an intermediate
regime of the impurity concentrations. It was soon recognized that other de-pairing mecha-
nisms, such as those involving the coupling of the orbital and spin degrees of freedom of the
electrons to a magnetic field, can lead to equivalent suppressions of superconductivity [2-5].

Conventional wisdom holds that magnetic fields and magnetic moments each tend to sup-
press superconductivity [6]. Therefore, it seems natural to suspect that any increase in a
magnetic field, applied to a superconductor containing magnetic impurities, would lead to
additional suppression of the superconductivity. However, very recently, Kharitonov and
Feigel’'man [7] have predicted the existence of a regime in which, by contrast, an increase in
the field applied to a superconductor containing magnetic impurities leads to a critical tem-
perature that first increases with magnetic field but eventually behaves more conventionally,
decreasing with the field and, ultimately, vanishing at a critical value of the field. More strik-
ingly, they have predicted that, over a certain range of concentrations of magnetic impurities,
a magnetic field can actually induce the normal state to become superconducting.
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The Kharitonov-Feigel’'man treatment focuses on determining the critical temperature via
the linear instability of the normal state. The purpose of the present letter is to address prop-
erties of the superconducting state itself, most notably the critical current and its dependence
on temperature and externally applied magnetic field. The approach that we shall take is
to derive the (transport-like) Eilenberger-Usadel equations [8,9], starting from the Gor’kov
equations. We account for the following effects: potential and spin-orbit scattering of elec-
trons from non-magnetic impurities, and spin-exchange scattering from magnetic impurities,
along with the orbital and Zeeman effects of the magnetic field. In addition to obtaining the
critical current, we shall recover the Kharitonov-Feigel’'man prediction for the critical tem-
perature, as well as the dependence of the order parameter on temperature and magnetic
field. In particular, we shall show that not only are there reasonable parameter regimes in
which both the critical current and the transition temperature vary non-monotonically with
increasing magnetic field, but also there are reasonable parameter regimes in which only the
low-temperature critical current is non-monotonic, even though the critical temperature varies
monotonically with field. We believe the present theory is applicable to explaining certain
recent experiments on superconducting wires [10].

Let us pause to give a physical picture of the relevant de-pairing mechanisms. First, mag-
netic impurities cause spin-exchange scattering of the electrons (including both spin-flip and
non-spin-flip terms, relative to an arbitrary spin quantization axis), and therefore lead to the
breaking of Cooper pairs [1]. Next, consider the effects of magnetic fields. The associated vec-
tor potential scrambles the relative quantum phases of the partners of a Cooper pair, as they
move diffusively in the presence of impurity scattering (viz., the orbital effect), which sup-
presses superconductivity [2,3]. On the other hand, the magnetic field polarizes the magnetic
impurity spins, which decreases the rate of exchange scattering, thus diminishing this contribu-
tion to de-pairing [7]. In addition, the Zeeman effect associated with the effective field (coming
from the magnetic field and the impurity spins) splits the energy of the up and down spins in
the Cooper pair, thus tending to suppress superconductivity [6]. But strong spin-orbit scat-
tering tends to weaken the de-pairing by the Zeeman effect [5]. Thus, we see that the magnetic
field produces competing tendencies: it causes de-pairing via the orbital and Zeeman effects
but it mollifies the de-pairing caused by magnetic impurities. This competition can manifest
itself through the non-monotonic behavior of observables such as the critical temperature and
critical current. In order for these manifestations to be observable, the magnetic field needs
to be present throughout the samples, a scenario readily accessible in wires and thin films.

Model. — The full Hamiltonian is H = Hy + Hiny + Hz. We take the impurity-free part
of the Hamiltonian to be of the BCS form [6, 11]

_ ; 2 .
Ho = [dr ol (V= 24) w4 5 far (Whuhosta + vlvhwava) - u [drvlve,
(1)
where ] () creates an electron having mass m, charge e, position r and spin projection «,
A is the vector potential, ¢ is the speed of light, p is the chemical potential, V; is the BCS
pairing interaction, and (- - - ) denotes the appropriate thermal average. Throughout this letter
we shall put A = 1 and kg = 1. Assuming the superconducting pairing is spin-singlet, we
introduce the complex order parameter A via

—Vo(vats) = iohsA, Vo(ulwh) = iol A%, (2)

where ng”z are the Pauli matrices. We assume that the electrons undergo potential (uq)

scattering from impurities, located at a set of random positions {z;}, spin-exchange (us)
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scattering from magnetic impurities, located at positions {x;}, and spin-orbit scattering (vso)
from a third set of impurities (or defects) located at positions {z;}, as well as being Zeeman-
coupled to the applied magnetic field: these effects are included via Hi,, = f dr 1/1&‘/&51/)5,
with Vs being given by

Vag = Zi ul(r—xi)éag—i—zj uz(r—yj)gj -0ap —I—Zkﬁvso(r—zk) . (Eag xﬁ) +upBogs, (3)

where gj is the spin of the j-th magnetic impurity. We note that cross terms, i.e., those involv-
ing distinct interactions, can be ignored when evaluating self-energy [5,7]. Furthermore, we
shall assume that the Kondo temperature is much lower than the temperatures of interest to us.

The impurity spins interact with the magnetic field through their own Zeeman term:
Hy = —wsS%, where ws = gsupB, ¢s is the impurity-spin g-factor, and pp is the Bohr
magneton. Thus, the impurity spins are not treated as static, but rather have their own
dynamics, induced by the applied magnetic field. We shall approximate the dynamics of the
impurity spins as if it were governed solely by the magnetic field, ignoring any influence on
them coming from the electrons. Then, as the impurity spins are in thermal equilibrium, we
may take the Matsubara correlators for a single spin to be

<T.,-Si(T1)S:F(T2)> — TZ ,Df/ﬂFe—W(n—Tz), 4 = (T, 5%(1)S7(r)) = (57)2, (4)
D7 =287 /(—iw' + wy), DT =257 /(+iw + ws), (5)
where w’ (= 27nT) is a bosonic Matsubara frequency and =~ denotes a thermal average. We

ignore correlations between distinct impurity spins, as their effects are of the second order in
the impurity concentration.
To facilitate the forthcoming analysis, we define the Nambu-Gor’kov four-component

spinor (see, e.g., refs. [5,12]) via ¥i(z) = (zﬂ(r, T),wI(T, T), 1 (r, ), (1, T)) Then the
electron-sector Green functions are defined in the standard way via

Gis(1:2) = (T, T, (1)T}(2)) = (Ig((llsé)) é(ézé))) ’ (6)

where Cl, @T, a , and F't are each two-by-two matrices (as indicated by the " symbol), i.e., the
normal and anomalous Green functions, respectively. As the pairing is assumed to be singlet,
F is off-diagonal whereas G is diagonal.

Eilenberger-Usadel equations. — The critical temperature and critical current are two of
the most readily observable quantities. The procedure is first to derive Eilenberger equa-
tions [8] and then, assuming the dirty limit, to obtain the Usadel equations. The self-
consistency condition between the anomalous Green function and the order parameter leads,
in the small order-parameter limit, to an equation determining the critical temperature. More-
over, solving the resulting transport-like equations, together with the self-consistency equa-
tion, gives the transport current, and this, when maximized over superfluid velocity, yields
the critical current.

To implement this procedure [8,9,13-15], one first derives the equations of motion for
G (viz., the Gor’kov equations). By suitably subtracting these equations from one another
one arrives at a form amenable to a semiclassical analysis, for which the rapidly and slowly
varying parts in the Green function (corresponding to the dependence on the relative and
center-of-mass coordinates of a Cooper pair, respectively) can be separated. Next, one treats
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the interaction Hamiltonian as an insertion in the self-energy, which leads to a new set of
semiclassical Gor’kov equations. These equations are still too complicated to use effectively,
but they can be simplified to the so-called Eilenberger equations [8] (at the expense of losing
detailed information about excitations) by introducing the energy-integrated Green functions:

w b R) = %/dgk Glw,k,R),  f(w k. R) = %/dgkﬁ(w,k,R), (1)

and similarly for §'(w, k, R) and fT(w,k, R). Here, w is the fermionic Matsubara frequency
Fourier-conjugate to the relative time, k is the relative momentum conjugate to the rela-
tive coordinate, and R is the center-of-mass coordinate. However, the resulting equations
do not determine g’s and f’s uniquely, and need to be supplemented by the normalization
conditions [8,9,13-15] as well as the self-consistency condition

PAHIT="+ =1, A=lglY fizw). (8)

In the dirty limit (i.e., wr, < G and A7, < F'), where 7, is the transport relaxation time
(which we shall not distinguish from the elastic mean-free time), the Eilenberger equations can
be simplified further, because, in this limit, the energy-integrated Green functions are almost
isotropic in k. This allows one to retain only the two lowest spherical harmonics (I = 0,1),
and to regard the [ = 1 term as a small correction (i.e., |k - F| < |F|), so that we may write

- - — v

9@k, R) = Gw,R) + k- G(w,R),  f(w.k,R)=F(w,R)+k F@.R),  (9)
where k is the unit vector along k. In this limit the normalization conditions simplify to
G%l =1- F12F2T1» G%z =1- F21F1T27 (10)
and the Eilenberger equations reduce to the Usadel equations [9] for Fia(w, R), Fbi(w, R),
Fly(w,R), and Fj, (w, R).

Application to thin wires and films. — Let us consider a wire (or film) thinner than the
coherence length. In this regime, we may assume that the order parameter has the form
A(R) = Ae'f= where R, is the coordinate measured along the direction of the current
(e.g., along the length of the wire) and u parametrizes the superfluid velocity via vs = hu/2m.
Similarly, we may assume that the semiclassical anomalous Green functions have the form

Fop(w,R) = Falg(w)ei“Rm, FTﬁ(w, R) = Flﬁ(w)e_i“Rm. (11)

e

By invoking the symmetry amongst the F’s (i.e., F*ﬁ = _Flﬁ and Fo3/A = —(Fjo/A)*) we

(03

may reduce the four Usadel equations (for Fia, Fy, F~‘1T2, and ﬁgl) to a single one:

dZ

B

1

3Tso

Flg(w>

A

GQQ(UJ)

w+idp + 21 > (DoFGaalw - ) + <

™ 7
w

+ g) Gll(W) +

T L Fh(w—W) 1 Fiy(w)
— = — —_— D /+12...— 1... 12
G (w) Gll(w)2’7’]3 ; ( w X ) + 3TSOG11(W) A0 12
in which we have used egs. (4) and (5), 6 = upB+n;u2(0)S?, D = D{{(u—2eA/c)?), where
the London gauge has been adopted and ((---)) defines a spatial average over the sample
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thickness, and D = ’U%Ttr/?) is the diffusion constant. The spin-exchange and spin-orbit
scattering times, 75 and Ty,, are defined via Fermi surface averages:
1 A2k 1 d2k B
= Nogn us|? = Nyn —|uso|? pE |k x E'|2. 13
o = Noner [ SR laP, o = Nonwor [ Sl P (13)

Here, Ny is the (single-spin) density of electronic states at the Fermi surface, n; is the con-
centration of magnetic impurities, ng, is the concentration of spin-orbit scatterers, pr = mvg
is the Fermi momentum, us and v, are potentials introduced in eq. (3). The normalization
condition then becomes

G (w) = sgn()[1 — FH(w)]'/?, G (w) = sgn(w)[1 - FF(@)]"? = G (w).  (14)

Furthermore, the self-consistency condition (8) becomes

In 2 = TZ(@ el )>7 (15)

in which we have exchanged the coupling constant g for T¢q, i.e., the critical temperature of
the superconductor in the absence of magnetic impurities and the magnetic fields.

Results for the critical temperature. — These can be obtained in the standard way, i.e.,
by i) setting v = 0 and expanding eqs. (12) to linear order in F' (at fixed A), and ii) setting
A — 0 and applying the self-consistency condition. In the limit of strong spin-orbit scattering
(i.e., Tso € 1/w and 7p), step 1) yields

o 2{{(2) ) e

2|Re C(w )Nl__zw’2+ sRe C(w — '),

o (16a)
where C = Fi5/A and
T ol |57 T w0, 5*
§s(w) =6 — — —_— I,=—+— — 16b
b =0 - >§>M Ry —+ l; P (16b)

in which a cutoff w, has been imposed on w’ in ;. This is essentially the Cooperon equation
in the strong spin-orbit scattering limit, first derived by Kharitonov and Feigel'man [7], up
to an inconsequential renormalization of dp. Step ii) involves solving the self-consistency
equation (15) to obtain the critical temperature T¢.

Figure 1 shows the dependence of the critical temperature of wires or thin films on the
(parallel) magnetic field for several values of magnetic impurity concentration. Note the quali-
tative features first obtained by Kharitonov and Feigel’'man [7]: starting at low concentrations
of magnetic impurities, the critical temperature decreases monotonically with the applied mag-
netic field. For larger concentrations, a marked non-monotonicity develops, and for yet larger
concentrations, a regime is found in which the magnetic field first induces superconductivity
but ultimately destroys it.

The non-monotonicity arises due to the two competing roles the magnetic field plays,
mentioned earlier. To see this, let us consider the strong spin-orbit scattering limit, where the
fourth term on the Lh.s. of eq. (16a) can be simply ignored. The third term (i.e., the orbital
contribution to de-pairing) scales as B? and is frequency indepdent, whereas the second term
(i.e., the de-pairing effect from the exchange scattering) develops a dip at low frequencies
as the field B increases before it saturates, as shown in the inset of fig. 2. Therefore, for
certain range of the impurity concentration it is possible to have non-monotonic behavior of
the critical temperature (and similarly of the critical current, see below).
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Fig. 1 — Critical temperature vs. (parallel) magnetic field for a range of exchange-scattering strengths
characterized by the dimensionless parameter @ = h/(kpTcoms). The strength for potential scat-
tering is characterized by the parameter h/(kpTcoTer) = 10, and that for spin-orbit scattering by
i/(kpTcoTso) = 10%; the sample thickness is d = 90.0 7i/pr, where pp is the Fermi momentum; the
impurity gyromagnetic ratio is chosen to be g; = 2.0; and the typical scale of the exchange energy us
in eq. (3) is taken to be Er /7.5, where Er is the Fermi energy.

Fig. 2 — Critical current vs. (parallel) magnetic field at several values of the temperature, with the
strength of the exchange scattering set to be a = 0.5 (corresponding to the solid line in fig. 1), and
all other parameters being the same as those used in fig. 1. The inset shows an example of the rate

I’y in eq. (16b) for B =0,3,6,9 T (from top to bottom).

Results for the critical current density. — To obtain the critical current density j. we first
determine the current density (averaged over the sample thickness) from the solution of the
Usadel equation, via

j(u) = 2eNoTDTY" Re <F122 () {u _ %«A»] ) (17)

and then maximize j(u) with respect to u. In the previous section, we saw that, over a certain
range of magnetic impurity concentrations, T displays an up-turn with field at small fields,
but eventually decreases. Not surprisingly, our calculations show that such non-monotonic
behavior is also reflected in the critical current.

Perhaps more interestingly, however, we have also found that for small concentrations of
magnetic impurities, although the critical temperature displays no non-monotonicity with
the field, the critical current does exhibit non-monotonicity, at least for lower temperatures.
This phenomenon, which is exemplified in fig. 2, sets magnetic impurities apart from other de-
pairing mechanisms. The reason why the critical current shows non-monotonicity more readily
than the critical temperature does is that the former can be measured at lower temperatures,
for which the impurities are more strongly polarized by the field.

Conclusion and outlook. — We have addressed the issue of superconductivity, allowing
for the simultaneous effects of magnetic fields and magnetic impurity scattering, as well as
spin-orbit impurity scattering. Although sufficiently strong magnetic fields inevitably de-
stroy superconductivity, their quenching effects on the magnetic impurities can, at lower field
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strengths, lead to the enhancement of superconductivity, as first predicted by Kharitonov and
Feigel'man via their analysis of the superconducting transition temperature. In the present
letter, we adopt the Eilenberger-Usadel semiclassical approach to address the critical current
of the superconducting state and, moreover, we also recover the behavior of critical temper-
ature obtained by Kharitonov and Feigel’'man. We have found that any non-monotonicity in
the field dependence of the critical temperature is always accompanied by non-monotonicity in
the field dependence of the critical current. However, we have also found that for a wide range
of physically reasonable values of the parameters the critical current exhibits non-monotonic
behavior with field at lower temperatures, even though at such parameter values there is no
such behavior in the critical temperature.

Especially for small samples, for which thermal fluctuations can smear the transition to
the superconducting state over a rather broad range of temperatures, the critical current is
expected to provide a more robust signature of the enhancement of superconductivity, as it
can be measured at arbitrarily low temperatures. In addition, critical currents can be mea-
sured over a range of temperatures, and thus provide rather stringent tests of any theoretical
models. Recent experiments measuring the critical temperatures and critical currents of su-
perconducting MoGe and Nb nanowires show a behavior consistent with the predictions of
the present letter, inasmuch as they display monotonically varying critical temperatures but
non-monotonically varying critical currents [10].
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