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Dephasing dynamics of Rydberg atom spin waves
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A theory of Rydberg atom interactions is used to derive analytical forms for the spin-wave pair correlation
function in laser-excited cold-atom vapors. This function controls the quantum statistics of light emission from
dense, inhomogeneous clouds of cold atoms of various spatial dimensionalities. The results yield distinctive
scaling behaviors on the microsecond time scale, including generalized exponential decay. A detailed comparison
is presented with a recent experiment on a cigar-shaped atomic ensemble [Y. Dudin and A. Kuzmich, Science
336, 887 (2012)], in which Rb atoms are excited to a set of Rydberg levels.
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Dipole-dipole interactions between atoms excited to Ryd-
berg levels are very strong compared to interactions between
atoms in their ground states [1]. A novel application, proposed
in Ref. [2], is that the Rydberg interaction could be utilized to
entangle atoms, even separated by up to 10 m, by controlling
the atomic phase shifts accumulated in the presence of laser
excitation. As a consequence Rydberg interactions offer great
promise—e.g., in the areas of ultracold atomic physics and
quantum information physics—for the generation and control
of many-body quantum states [3], sources of nonclassical light
emission, and the realization of fast quantum gates [4].

The Rydberg blockade is a paradigm for strong Rydberg
atom interactions: An atom, once excited to a Rydberg level,
induces a level shift of nearby atoms that prevents their
excitation [5]. This process promises near-perfect efficiency
for single-photon emission and realization of quantum gates.
For the blockade to be effective, the interaction strength
between every atom pair should exceed the Rabi frequency
and linewidth of the excitation laser; this requirement imposes
stringent limits on the size of the atomic cloud.

A different interaction regime may be reached by loading
an atomic ensemble with a Poissonian number distribution of
laser-induced Rydberg excitations [6]. Interactions then cause
temporal dephasing of states with more than one excitation:
an effect based on the variation of the interatomic potential in
a spatially extended ensemble. The retrieval process maps the
spin-wave pair correlations onto the emitted light, via a phase-
matching condition [7], promising a fast, high-quality, single-
photon source. The efficiency of the source is limited by the
probability amplitude of the single-excitation component of
the many-body wave function. The experimental observation
of spin-wave dephasing has been reported recently [8]. That
the interaction mechanism is dominated by dephasing, as
opposed to Rydberg blockade, was inferred from the evolution
of the excited fraction of Rydberg atoms as a function of the
Rabi frequency and by the absence of many-body oscillations,
typical of the blockade regime.

In this Rapid Communication, motivated by the desire to
obtain a closed expression for the time dependence of the
spin-wave pair correlation function, we present a theory of the
spin-wave dynamics based on Rydberg atom short- and long-
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controls the sub-Poissonian quantum statistics of the emitted
light field and the speed of the single-photon protocol. In order
to be able to address highly asymmetric clouds, we derive
expressions for samples of varying spatial dimensionality D.
We present results for both van der Waals (vdW) and dipole-
dipole interaction potentials, and show that experimental data
reported in Ref. [8] is in agreement with the vdW theory.

Spin-wave dephasing. We consider a gas of N atoms of
fixed positions r, (with u =1,...,N), laser excited from
the atomic ground state |g) to a Rydberg level |r). We
denote by |G) the N-atom ground state, and we denote by
luv) =g, .. .,gn) the state in which atoms
@ and v (and only those atoms) are excited from |g) to
|r). In the limit in which only a few atoms are excited,
we can effectively describe collective excitations by means
of quasibosonic spin waves associated with the destruction
operator S, = (1/+/N) 25:1 e %Tulg )(r,|, where Ky is the
wave vector of the spin wave, which is fixed by the excitation
process. We assume that the laser excitation prepares the
system at time ¢ = 0 in the state
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As the excitation is assumed to be weak, the distribution
|c.n|? is typically a nonincreasing function of m. Two-body
interactions between Rydberg-excited atoms w and v give a
level shift A, = V,,,/h that depends on the specific form of
the interaction potential V,,,. Here, we shall assume that V,,, =
Cy/Ir, —ry|%, witha = 3 or 6 and C, determined by the Ry-
dberg target state [1,9]. After excitation, the N atoms interact
for a time ¢. As a result the atomic states are phase shifted;
e.g., in the two-body sector, |uwv) — exp(—iA,,t)|uv). More
generally, the phase shift for a state with m excitations,
[te1 .. ), is given by @y, 0, = —t Zl<j<i<m Ay, The
spin-wave pair correlation function, after storage time f,
g2(1) = (5 (O8] (8, (08, )/ (8L, (8, ()% is given,
with ji,,_x = m!/[(m — k)!N™ k], by

i 2
§ el¢u LB 2V V2
Vi,V2

2 .
2wz loml 220 s

ranged interactions. By using asymptotic methods appropriate P = 5. o 12120
for the long-time regime, we obtain analytical expressions for [Zm2l |Cm % Jm—1 Z[L].--Mm—l |Zv e \ ]

the dynamics of the spin-wave pair correlation function, which 2)
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where we have assumed that N >> 1. The term for m = 1 in
the denominator corresponds to |c; |2, as states having a single
excitation are not phase shifted. For m = 2 in the numerator,
we have only the sum within the absolute value that we define
as the atom-pair interference function

N
P(t) = % DO e, 3)

u=lv#u

It is known that ¢®(0) = 1 for a Poisson distribution of c,,.
Interactions cause destructive interference of the distinct atom-
pair contributions, resulting in temporal decay of P(¢). Higher-
order interference contributions may be expressed in terms of
the two-body result
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where we use the results of Ref. [10]. For long enough times,
t > t. where t. is a characteristic time associated with the
specific interaction potential, |P(¢)| < 1, and, therefore, the
correlation function reduces to the form [6]
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In Ref. [7], we exhibit the direct relationship between states of
spin-wave excitation and those of photons emitted into a phase-
matched mode of the field. As a consequence, the spin-wave
pair correlation function is equal to the Glauber’s normalized
second-order correlation function of the phase-matched field
mode.

Dephasing in a cigar-shaped ensemble. Here, by using
formula (2), we numerically calculate g@@) fora cigar-shaped
ensemble and compare the results with the data of the
experiment described in Ref. [8]. In that work, the spin-wave
correlations were inferred by measuring the probability of
two coincident photoelectric detection events, in a phase-
matched mode determined by the experimental setup. Instead
of studying the temporal dynamics for a given Rydberg level,
the principal quantum number n was varied for a fixed storage
time 7y = 0.3 pus. As the phase shifts are given by V,,, T, /A,
and the Rydberg interaction scales with n, the measurements
effectively map out the dynamics. The longitudinal size of
the ensemble is set by the optical lattice beam, of waist w, =
15 wm; the transverse area is determined by the overlap of two
laser beams, each of waist 9 um, giving a transverse waist of
the excitation zone w of (9/ V/2) pm. For an ensemble of peak
density py ~ 10'2 cm™3, the number of interacting atoms is
given by N = (71/2)3/2p0wzwf_ ~ 1200. In the present work,
we determine the interatomic potentials for different n via
a single-channel model, |ns1/2,nS12) <> [np3s2,(n — Dp3j2),
which is based on a semiclassical calculation of the dipole
transition matrix elements [9]. We evaluate the atom-pair
interference function by Monte Carlo integration, and use
it to determine the contribution of multiple excitations: The
result converges once we have included of the order of ten
excitations. We sample N = 1000 atoms, although the result
is essentially independent of N, provided N is much larger
than the number of excitations. We assume that the initial
spin-wave distribution state is Poissonian (1) with unit mean,

) (5)
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FIG. 1. (Color online) Behavior of the spin-wave pair correlation
function g® vs n for an asymmetrical cloud having (w.,w,) =
(15,6.4) um, compared with the experimental data from Ref. [8]
(black dots). Also shown are results from the double-spin-wave model
(blue, dashed line). Experimental data are reprinted with permission
from The American Association for the Advancement of Science
(AAAS) and authors.

ie., ¢,y = 1/+/em!. To facilitate comparison with the data of
Ref. [8], the theoretical values are adjusted to account for the

measured photodetection background noise g(z) g?P - 1-

bg »
gézg))g(z) + g,(f; . Figure 1 shows striking agreement between

the model and the experimental data over the full range of
principal quantum numbers measured. We note that a model
retaining only single and double excitations is good for large
principal quantum numbers, i.e., n 2 60.

Analytical treatment of spin-wave dephasing. To develop
an analytical theory of the spin-wave dynamics in the limit
N > 1, we define P(t) via

P(t) = / dA e A p(A), (6)

where p(A) is the probability distribution for the interaction-
induced frequency shift A associated with the ensemble of
atom locations. We note that p(A) is determined by the
interaction potential and by the geometry of the atomic
ensemble.

To determine p, we consider a D-dimensional isotropic,
ensemble having a Gaussian density profile; the formalism
makes it possible to deal qualitatively also with anisotropic
samples whose aspect ratio can be experimentally engineered
via a combination of trap and excitation beams [3]. The
two-particle spatial distribution P is given by Pp(ry,rp) =
Np e~ ri+/20%) \where w = 20 is the waist of the cloud, and
the normalization Np is given by ANp = (2wo?)~P. Then the
probability density for finding two particles separated by the
vector R is given by

Pp(R) = /dDrl dPry P(ri,r) S(R — 1y +12)

R /@0?)
= —. 7
(4w o?)brz )
Hence, one has that the distribution Pp(R) of in-
terparticle separations R = |R| in dimension D is

given by Pp(R) = Sp_1e K14 /(4w a?)P/2, where Sp_;
[=n P2/ T(D/2))RP~'1is the (D — 1)-dimensional area of
the surface of a D-dimensional ball of radius R. From this
distribution, we have access to the probability distribution of
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a function f(R), via the standard Jacobian transformation:

1 SD_le—Rz/(402)
|df/dR| (4mo?)P/2

po(f(R) = ®)
We use this result to determine the probability distribution of
Rydberg atom level shifts for different interaction potentials,
enabling calculation of the atom-pair interference function via
asymptotic methods.

“Isotropic” dipole-dipole interaction. The interaction be-
tween states of nonzero dipole moment is proportional to
C3/R?, where C; is determined by the contributing scattering
channels [9]. One way to achieve this interaction is by
coupling near-degenerate atomic orbitals of different parity
via an electrostatic field, so that the atoms acquire a dipole
moment aligned along the field [11]. For systems of reduced
dimensionality (i.e., D being 1 or 2), the interaction can be
made isotropic by applying the external field in a direction
orthogonal to the system; for the case of D = 3, isotropy is
not truly achievable, so an isotropic theory should provide only
a qualitative description.

We now calculate the atom-pair interference function
Pil(r) = [ di p(k)e "’ Here, we define the dimen-
sionless time 1T = Q44¢, Where 1, = (C3/03), and the
normalized interaction energy K = (o/R)?, whose probability
distribution is then given by Eq. (8),

1 1

—1/4k*3
ZD*I3F(D/2) K1+D/3e o ©

Pl k) =

By using the method of steepest descents (see, e.g., Ref. [12]),
we evaluate the long-time asymptotic behavior of the integral,
obtaining at leading order

Pld(r) 2 Apr PV BT (10)

where B=(5/2)x 63 ¢ ™5 and Ap =./n/5x
e~ im(D=D/106(D=D/5 /[2D=21"(D /2)]. According to Eq. (5), the
asymptotic decay of g follows the square modulus of P (7),

which is given by [P (7)? =L | Ap|2T5(P=D g 2RelBI 2
We note that the next asymptotic correction to Pf)d(r)
multiplies the latter by the complex factor {14 e'5/
(6T 21+ 2)(D —2)+ #1}. In Fig. 2(a), discussed
further below, we compare the asymptotics with numerical
results generated for an ensemble of atoms at randomly
distributed positions [13].

van der Waals interaction. In the absence of external
electromagnetic fields, the interaction between atoms excited
to Rydberg levels has a dipole-dipole character at small
separation and crosses over to the vdW (i.e., R~%) form at
larger separations [9]. As the typical size of the ensembles
under consideration is much larger than the crossover radius,
we assume a vdW interaction over the whole cloud. In analogy
with the discussion of the dipole-dipole case, we define a di-
mensionless vdW energy » = (o/R)®, distributed according to

1 1
2031(D/2) 1+0/6°

Py () = 1A (11)

An asymptotic expression for the atom-pair interference
function (6) is found using the method of steepest descents as
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FIG. 2. (Color online) Asymptotic behavior of atom-pair inter-
ference function for double excitations of the 100s level. (a) Isotropic
dipole-dipole interactions: Solid lines are numerical simulation for
D =1 [blue (black)], 2 [red (dark gray)], and 3 [green (light
gray)], compared with the long-time asymptotic behavior given by
the modulus square of Eq. (10) (dashed lines). The green (light
gray) dotted-dashed line includes the first asymptotic correction for
D = 3. (b) vdW interactions [color legend as in (a)]: The long-time
behavior shows the square modulus of formula (12). The first-order
asymptotic correction for D = 3 is indistinguishable from the solid
line. Parameters are given in the text.

before,

>l Dol g
PyW(r) =5 Cpr s eI

, 12)
where the dimensionless time is T = Quaw?, hQuw =
(Cs/0®), and we define the coefficients Cp, = /27 e~ 16(P—D
12(P=D/8/12P(D/2)] and F = (12'74/3)e"/3. We note
that the next order asymptotic correction maps Pz)dw(r) —
PrW(r) x {1+ ™8 /120431 + 2)E2 — D+ 2]} In
Fig. 2(b), we show the dephasing dynamics for the vdW
interaction for atomic ensembles of various dimensionality
but common waist size.

These results may be compared with those for dipole-dipole
interactions, shown in Fig. 2(a). We compare the asymptotics
with numerical calculations for the target Rydberg level
100s, for which C3/h =27 x 10° MHz um?® and Cg/h =
27 x 5.3 x 10 MHz um®. For an ensemble of waist w =
30 um, we obtain typical level shifts of ,;, = 2w x 30 MHz
and Qugw = 27w x 4.7 MHz. We note that for the vdW case,
decay is roughly two orders of magnitude slower than for the
dipole-dipole interaction. This result is dependent on the size
of the ensemble, which sets the typical interaction strengths
(R4a > Qvaw), and on the range of the interaction, which
determines the power law in the generalized exponential decay
(2/5 > 1/4). The longer range of the dipole-dipole interaction
makes it more effective for fast dephasing in a mesoscopic
ensemble [14]. In Fig. 2 we also observe that the leading-order
asymptotics is more accurate for D = 1 and 2 than for D = 3.
The results for D = 3 are significantly improved by including
the next asymptotic correction. The analytical and numerical
results are then almost indistinguishable on the scale shown.
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Although the cigar-shaped ensemble does not have a Gaussian
density profile, as assumed in our asymptotic analysis, it is
possible to qualitatively model the data of Fig. 1 for n = 60,
if we take the dimension of the gas to be nonintegral, in fact,
D = 1.3. We remark that we are showing the behavior of P(t)
because we are interested in the limit P(t) < 1, where g® is
dominated by the two-body interactions. Contributions to the
spin-wave pair correlation function (2) from more than two
excitations can be assessed via formula (4).

In conclusion, we have given results for the long-time
asymptotic dynamics of Rydberg atom spin waves that have
been prepared via laser excitation of a cold atomic ensemble.
Our results provide analytical scaling behaviors that are of
value in assessing, e.g., the limits in speedup achievable by
using Rydberg atom interactions for single-photon protocols
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relevant to quantum information processing [15]. For clouds
having a Gaussian density profile, the decay follows a
generalized exponential in time, with a rational power in the
exponent that is governed by the range of the interaction
potential. Numerical results for a cigar-shaped cloud are in
good agreement with a recent experimental measurement of
spin-wave dephasing in atomic Rb [8].
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