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This example is simply intended 
to illustrate that even in the reduced 
symmetry, with intrinsic anisotropies, an 
interpretation based on collective effects 
is not too far-fetched. In reality, there are 
many sample- and material-specific details 
that may prove to be significant. Apart from 
the aforementioned sample geometry, these 
include the strong coupling of the electrons’ 
spin to their orbital motion in bismuth; the 
relative weakness of interactions owing to 
a large dielectric constant (ε ≈ 100); and 

the Dirac dispersion underlying the small 
Fermi surface. Details aside, it seems likely 
that resolving the nature of the anisotropic 
phase will involve a careful re-examination 
of several tenets of solid state theory — and 
some fascinating new physics.� ❐
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Every undergraduate physics student 
learns that a metal is a material whose 
valence electrons occupy a finite density 

of quantum states at the Fermi energy (or 
chemical potential). Consequently, these 
electrons are free to move through the 
metal, to conduct electricity and heat more 
easily than they could in an insulator. This 
distinction becomes absolute in the limit 
of absolute zero temperature, at which the 

electrical resistivity of a metal remains 
finite and an insulator becomes infinite. 
One might expect that such behaviour is 
independent of the dimensionality of a 
system. Yet it turns out that the question of 
whether it is even possible for a conventional 
metallic state to exist in two dimensions is 
one that has eluded a definitive answer for 
decades. Now, in Nature Physics, Eley and 
colleagues1 report a study that comes the 

closest yet to an answer, and suggests that 
the answer could be ‘yes’.

The two main factors that have 
frustrated attempts to realize an ‘ideal’ two-
dimensional (2D) metal are disorder and 
Coulomb repulsion. Conventional Bloch 
theory begins by assuming that all materials 
are perfect crystals, and that the electrons 
moving through a given material only ever 
see the potential that is created by the ions 
of its crystal lattice — that is, the Coulomb 
interaction between electrons is negligible. 
But, in reality no crystal is perfect, and 
the effects of even a small Coulomb 
interaction can be important if there is 
also disorder. Moreover, in work that won 
them a share in the 1977 Nobel Prize for 
Physics, Philip Anderson and Neville Mott 
respectively showed that the introduction of 
disorder2 or strong Coulomb interactions3 
can cause a metal to become an insulator. 
In a 3D metal, this only occurs when the 
disorder (or strength of the Coulomb 
interaction) exceeds a certain critical point. 
But in a 2D metal, it has been shown that 
the presence of any amount of disorder, not 
matter how weak, will always induce an 
insulating state4. This represents just one 
of the remarkable differences that can arise 
between 2D and 3D materials — a fact that 
surprises even specialists in condensed-
matter physics. And although this 
conclusion4 is widely accepted, there are still 
issues of controversy5.

Eley et al. take an unconventional 
approach to the question1. Rather than 
attempting to grow a perfect 2D metal film, 
they constructed an artificial analogue 

2D ELECTRON SYSTEMS

Metals in flatland
Is it possible for a metal to exist in a strictly two-dimensional system? This may seem trivial, but it is actually a 
longstanding problem. The electrical characteristics of an array of superconducting islands on a normal metal 
suggests that the answer could be ‘yes’.
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Figure 1 | Phase diagram of a 2D metal. It is believed that metals are unable to exist in two dimensions in 
the presence of disorder, W, as they would become insulating. If there are strong repulsive interactions 
between the electrons (U), the metal (blue) is also destroyed and becomes a Mott insulator. Weak 
attractive interactions lead to a Bardeen–Cooper–Schrieffer (BCS)-type superconductor (red). If the 
interactions are strong, this crosses over into a superconductor of pre-formed pairs — a Bose–Einstein 
condensate (BEC) of charged bosons. Conventionally, we would expect that even stronger attractive 
interactions would lead to instability of this BEC towards localization of the pairs, forming a Bose glass 
phase, which would be an insulator. In the structured systems described by Eley et al.1, there appears to be 
a possibility of a new metallic phase (green), which would be a metal of charged bosons (Cooper pairs), 
rather than a conventional electron metal.
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consisting of an array of superconducting 
niobium islands on a normal metallic gold 
substrate. By controlling the height, diameter 
and spacing of the islands, they were able to 
control the characteristics of the array. And 
because the individual islands were each 
composed of many different superconducting 
grains, the characteristics exhibited by their 
arrays are richer than those of similar but 
simpler arrays explored in previous studies — 
with surprising results.

At temperatures just above niobium’s bulk 
superconducting transition temperature 
(9 K), the temperature dependence of the 
resistivity of the arrays was flat. But as the 
temperature was gradually lowered, at 
some point (T1) below this temperature, 
the resistivity began to decrease slowly. In 
this state, one expects the electrical current 
to have been carried by Cooper pairs 
tunnelling from island to island (Josephson 
tunnelling), rather than by normal electrons. 
At this temperature, the multigrain nature 
of the superconducting islands gives rise 
to multiple incoherent Cooper pair states. 
This means that the interisland tunnelling 
is incoherent as well, analogous to the 
incoherent transport of electrons in a metal 
at finite temperature.

As the temperature is lowered further, 
the resistance of the system continues to fall 
slowly until, at some second temperature (T2), 
it drops precipitously to zero. The authors 
explain this behaviour in terms of a gradual 
increase in the coherence of the Cooper pair 
condensate. Coherence first develops within 
each island and the Cooper pair states of its 
grains begin to coalesce. This then spreads 

as the temperature falls until, at T2, the 
condensate in the array as a whole becomes 
coherent, or is as coherent as is allowed in 
two dimensions (following the model for 
2D superfluidity6).

So how can it be said that this experiment 
suggests the existence of a putative 2D 
metal — particularly in light of the fact that 
it should be forbidden4? Eley et al. found that 
the temperature, T2, changed considerably 
as the interisland spacing of their arrays 
was varied, falling monotonically with 
increasing separation. At the largest spacing 
investigated, the authors found T2 to be as 
low as 1 K — well below the superconducting 
transition temperature of bulk niobium and 
tantalizingly close to 0 K. The results indicate 
that it might be possible to build an array 
with T2 = 0. The resistance of such an array 
would never fall to zero — it would never 
become superconducting — but remain finite, 
even as it approached absolute zero. Such 
an array would, for all intents and purposes, 
represent the elusive 2D metal.

Figure 1 illustrates where this new 
metallic state lies in the phase diagram of 
a hypothetical 2D metal. The conventional 
metallic state exists only in total absence 
of disorder, W, and for sufficiently weak 
and positive Coulomb interaction, U. 
It is destroyed by the Mott transition 
for large positive U and for any level 
of W. On the other hand, for attractive 
effective interactions, described here by 
negative values of U, we would expect 2D 
superconductivity. For small values of U, 
this will be a Bardeen–Cooper–Schrieffer-
type superconductor, whereas for stronger 

attractive interactions a Bose condensate 
of pre-formed pairs7 might occur. The new 
metallic state proposed by Eley et al.1 lies in 
a region where these pairs are mobile, but 
are not fully Bose–Einstein condensed into a 
superconducting state.

If it is possible to achieve, this zero-
temperature metallic state would therefore be 
very different from a conventional metal, the 
properties of which are governed by electrons. 
Rather, it would be more accurate to describe 
it as a quantum liquid of bosons — as Cooper 
pairs behave like bosons. This therefore 
would be a realization of a gas of charged 
bosons, first investigated in 1955 by Schafroth 
as a model for superconductivity7. But just 
as a conventional metallic state encounters 
problems when it is taken from 3D to 2D, 
so too does a Bose gas, which is unable to 
manifest the equivalent of Bose–Einstein 
condensation in 2D. Such a state would be 
something that we have not yet encountered. 
Perhaps the most apt description of such a 
state is that of a quantum disordered phase of 
the condensate1.� ❐
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Topological defects are local defects 
in otherwise ordered structures that 
can only be removed by some global 

deformation — no amount of local bending 
at or twisting around the defect can remove 
them from the structure. Such defects are 
well known in both classical and quantum 
settings; examples include domain walls and 
dislocations in crystals, vortices in two-
dimensional superfluids and monopoles 
in liquid crystals1. Although a topological 
defect is local in structure, it is also intimately 

connected to the long-range ordering of 
the structure in which it is embedded. In 
a magnet, defects such as domain walls 
separate regions characterized by different 
magnetization or global spin order, resulting 
in discontinuous order parameters and 
different instances (or ‘resolutions’) of a 
broken symmetry. It is therefore natural to 
expect that the origins of topological defects 
should be related to the origins of broken 
symmetries and hence to the microscopic 
details of phase transitions. Such defects may 

also exist in the mathematical fields describing 
matter at high energies and temperatures, as 
a result of symmetry-breaking cosmological 
phase transitions in the early Universe. That 
insight has spurred much interest in the 
modelling of cosmological events by more 
commonplace phase transitions that can be 
studied in condensed-matter systems2.

If topological defects are local, irremediable 
faults within a global structure, then what 
would it mean for the global system to be in a 
quantum superposition state of these defects? 

TOPOLOGICAL DEFECTS

Topology in superposition
Topological defects are encountered in fields ranging from condensed-matter physics to cosmology. These 
broken-symmetry objects are intrinsically local, but theoretical work now suggests that non-local quantum 
superpositions of such local defects might arise in a quantum phase transition.
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