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The application of single molecules as templates for nanodevices is a

promising direction for nanotechnology. We use suspended deoxyribonucleic

acid molecules or single-walled carbon nanotubes as templates for fabricating

superconducting devices and then study these devices at cryogenic tem-

peratures. Because the resulting nanowires are extremely thin, comparable in

diameter to the templating molecule itself, their electronic state is highly

susceptible to thermal fluctuations. The most important family of these

fluctuations are the collective ones, which take the form of Little’s phase slips

or ruptures of the many-electron organization. These phase slips break the

quantum coherence of the superconducting condensate and render the wire

slightly resistive (i.e., not fully superconducting), even at temperatures

substantially lower than the critical temperature of the superconducting

transition. At low temperatures, for which the thermal fluctuations are weak,

we observe the effects of quantum fluctuations, which lead to the

phenomenon of macroscopic quantum tunneling. The modern fabrication

method of molecular templating, reviewed here, can be readily implemented

to synthesize nanowires from other materials, such as normal metals,

ferromagnetic alloys, and semiconductors.
1. Introduction

Molecular templating (MT)[1] offers the possibility of fabricating
homogeneous wires, which can be made very short (as short as
�30 nm)[2] and very thin, viz. as thin as �5 nm or possibly even
thinner.[1,3–6] TheMT technique involves the sputter-deposition of
a thin metallic film over suspended (and dried) DNA
molecules[4,7,8] or a carbon nanotubes.[1,3,5] The results published
so far indicate that not all metals form homogeneous nanowires
when deposited on the surface of a carbon nanotube. Amorphous
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alloys, such as MoxGe1�x, provide wires
having a high degree of homogeneity.[1,6]

For elemental metals the general tendency
is to form disconnected grains when
deposited on a carbon nanotube.[3] On the
other hand, some elemental metals, such as
Nb,[5,9] amorphous Os,[5] and Ti,[3] exhibit
strong adhesion to the nanotube. These
metals can be used as ‘‘sticking’’ layers for
other metals.[3] Thus, in the MT method
the choice of the material determines the
morphology of the resulting nanowire. In
this Research News article we focus on
wires fabricated by a sputter-deposition
of Mo79Ge21 films[10,11] over suspended
carbon nanotubes. The elemental composi-
tions of the alloy were as indicated (or
similar to this), and were optimized with the
goal of obtaining the highest critical
temperature for the superconducting tran-
sition. This particular alloy shows an
excellent adhesion to nanotubes (and to
DNA also). The MT method also has the
virtue of creating wires that are seamlessly
connected to the measurement leads. Thus,
the MT technique provides an efficient solution to the general
problem ofmaking good electrical contact to the nanowires under
investigation.

Nanowire devices have been used to study quantum coherence
and decoherence effects in 1D superconductors. A single-wire
device consists of two coplanar superconducting films (to be
called ‘‘electrodes’’ or ‘‘thin-film electrodes’’), connected elec-
trically to each other through just one individual superconducting
nanowire. The supercurrent flowing from one electrode to the
other through the nanowire is proportional to the difference of
the phases of the condensate wave functions in each of the
electrodes. If the wave function in the wire is coherent (i.e., the
phase difference evolves in agreement with the Schrödineger
equation), then a supercurrent can flow with zero voltage applied.
On the other hand, if the rate of occurrence of decoherence events
(i.e., Little’s phase slips (LPSs))[12] is not zero, a proportional
voltage occurs between the electrodes. Thus, by measuring the
voltage (with a weak constant current being applied through
the wire) we determine the rate at which the phase-coherence-
breaking phase slips occur. We find that at low bias-current this
rate of phase slips follows the Arrhenius thermal-activation law.
Similar results have recently been obtained in experiments on
thin wires fabricated from high-temperature superconductor
materials.[13] In our experiments, no signatures of quantum
m 1111
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tunneling of the phase slips was observed in our short wires at low
bias-currents. However, at high bias-currents, i.e., at currents
close to the critical current of the nanowire, we do observe a clear
signature of quantum phase slips (QPSs), namely, strong
fluctuations in the currents at which switching to a resistive
state occurs.[14]
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2. Fabrication of Nanowires Using Molecular
Templates

The technique of MT[1] can be used to fabricate homogeneous
metallic wires with ultrasmall dimensions, i.e., of diameters
significantly less than �10 nm and lengths as small as �30 nm.
One important advantage of MT is that, as produced, the
nanowires are seamlessly connected to metallic electrodes, thus
ideal for transport measurements of various types. Another
advantage is that the technique can be generalized to various
materials and also to a range of geometries, if substrate molecules
(or molecular assemblies) of the desired geometry can be
synthesized and obtained in a suspended state.

In the MTmethod (see Fig. 1), fabrication starts with a Si (100)
wafer covered with a 500-nm-thick layer of SiO2 (including a
100-nm-thick film of ‘‘dry oxide’’ and a 400-nm-thick film of ‘‘wet
oxide’’) and a 60-nm-thick film of low-stress SiN deposited by
low-pressure chemical vapor deposition (LPCVD) over the oxide
layer.[15] In the next fabrication step, a narrow (�100 nm) and long
(�5mm) trench is defined in the top layer of SiN using electron
beam (e-beam) lithography with PMMA resist, followed by
reactive ion etching using SF6 plasma. A focused ion beam (FIB)
can be used instead of e-beam lithography to form the trench. An
undercut (see Fig. 1) surrounding the trench is then formed by
wet etching in 50%HF for�10 s. A less concentrated HF solution
can also be used, but the etching time should then be increased.
The undercut develops because the etching rate of the oxide is
positions of Professor of Physics, Director of the Institute for
Condensed Matter Theory, and Research Professor in the
Frederick Seitz Materials Research Laboratory.

Figure 1. Schematic image of the principle of MT.[6] Here, a nanotube is
positioned over a narrow (�100 nm) trench etched into the top SiN layer
(yellow). The layer of SiO2, which is available directly under the SiN film is
used to create an undercut via HF wet etching. In order to make the the
sample out of a metallic nanowire, the desired metal—typically Mo79Ge21
or Nb—is sputter-deposited over the entire surface of the Si chip, including
the molecule suspended over the trench. As the sputtered metal atoms
(red circles) stick to the suspended nanotube, ametallic nanowire forms on
the surface of the nanotube. The electrodes, which are thin MoGe films,
usually�15mmwide, are marked E1 and E2. In a real sample, the electrode
smoothly transition into larger-area contact pads, with at least two pads on
each side of the trench. The contact pads are not shown here. The segment
of the wire located between arrows A and B is suspended over the tilted
sides (TS) of the trench, and therefore it appears as a ‘‘white spot’’ when
imaged using SEM.

� 2010 WILEY-VCH Verlag Gmb
much larger than the etching rate of the nitride. We typically try to
make the undercut to be about 300 nm in width, on each side of
the trench. The undercut is very important for proper device
operation, as it ensures that the electrodes formed in the
subsequent metal sputtering step are electrically disconnected
everywhere except through the nanowire. The deposition of
molecules is done from the liquid phase, which can be a solution
of fluorinated nanotubes in isopropanol, a suspension of regular
nanotubes in dichloroethane, or a water solution containing
l-DNA molecules. The solvent can either be removed by blowing
dry nitrogen gas over the sample or, in the case of DNA
deposition, by evaporation in a vacuum-desiccator.

After the solvent is removed, a metallic film is sputter-
deposited over the entire sample. For each sample only one
sputtering run is carried out, in which the wire and the leads are
produced simultaneously. After the sputtering, each molecule
suspended over the trench has become coated with metal, and
thus is transformed into a very thin metallic nanowire. After the
H & Co. KGaA, Weinheim Adv. Mater. 2010, 22, 1111–1121
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sputter-deposition step, the Si chip is examined using scanning
electron microscopy (SEM), and a wire with no visible defects is
selected. Under ‘‘visible defects’’ we understand interruption
and/or constrictions, or other imperfections, which can be seen
on SEM images of the examined nanowire. After a solitary and
defect-free wire is found, its position is determined with respect
to a periodic set of markers located near and along the trench.
Then, the sample is spin-coated with a photoresist and subjected
to photolithography, while the optical mask alignment is guided
by the markers. The markers, which are simply numbers etched
into the SiN film, have typical dimensions of about 5–10mm, so
they are clearly visible in the optical microscope used to align the
photomask. The markers are spaced periodically along the trench
with a step of �20mm. Making samples with just one wire
connecting the electrodes is possible because the concentration of
wires can be made sufficiently low, typically one per every
�100mm of the trench length, while the width of the electrodes,
defined by the photomask, is usually five to ten times smaller than
this.

As a result of photolithography a sample is obtained that has
contact pads connected to �15-mm-wide electrodes, which
approach the trench from opposite sides, the wire serving as a
weak electrical link bridging the trench and connecting the
electrodes to one other.

SEM imaging shows that MT-produced nanowires are
continuous and homogeneous (Fig. 2). Some apparent surface
roughness can be attributed to the amorphous structure of the
wire (meaning a random arrangement of atoms) and to oxidation
of its surface, as the nanowires are exposed to air during the
fabrication steps. Imaging with transmission electronmicroscopy
(TEM) confirms that the wires are structurally homogeneous and
amorphous.
3. Electrical Transport Measurements

The sample is biased with an AC current at a frequency of�11Hz
and amplitude in the range 1–10 nA. The current bias is achieved
by using an ultralow-distortion function generator (Stanford
Research Systems DS 360). The voltage from the generator is
Figure 2. A SEM image of a MoGe nanowire (gray) suspended over a
trench (black) and seamlessly connecting to two MoGe electrodes (gray
areas on the top and on the bottom).[6] The white spots are visible on both
sides of the wire, indicating that the wire is straight and well suspended.
The beginning and end of one of the white spots are marked by arrows A
and B, corresponding to the A and B arrows of Figure 1.

Adv. Mater. 2010, 22, 1111–1121 � 2010 WILEY-VCH Verlag G
applied to the sample through a standard resistor with a value of
�1MV, which is much larger than the typical resistance of the
sample and the leads connected to the sample (which is
�1–10 kV). Thus, the current through the sample, connected
in series with the standard resistor, is mostly determined by the
value of the resistor. This current is recorded, as a function of
time, by measuring the voltage across the standard resistor (and
dividing the measured voltage by the value of the standard
resistor). The voltage on the superconducting electrodes is also
measured (with a separate pair of leads) and recoded as a function
of time. Both measurements are carried out using battery-
powered preamps (either Princeton Applied Research model 113
or Stanford Research Systems model SR 560). After one period of
the sinusoidally time-dependent bias current is completed, the
recorded voltage V is plotted as a function of current I. Thus, the
V(I) curve is obtained and is plotted on the screen of a computer
using LabVIEW software. In order to determine the linear
resistance of the sample (also called zero-bias resistance), the
current-bias amplitude is chosen to be small enough that the V(I)
curve is linear. Then, the best linear fit to the V(I) curve is found
using LabVIEW functions. The slope of the linear fit is defined to
be the resistance R of the sample.

At low-enough temperatures (� 1K), typical nanowires, if they
are not too thin, show pronounced signs of superconductivity.
The wire has to be ‘‘not too thin’’ because wires that are thinner
than some length- and material-dependent critical diameter do
not exhibit any signs of superconductivity but, rather, can be
characterized as insulating wires.[2] Here, we discuss only
superconducting wires, but not insulating ones. The resistance
R of the superconducitng wires becomes immeasurably small at
low temperatures. For the type of measurement outlined above,
the lowest value of R that can be measured is roughly 1V. This
lowest value is called the ‘‘noise floor’’ of the setup. As the
temperature of the sample is reduced below a certain value, R
drops below the noise floor and cannot be measured. At such low
temperatures, we perform a complementary measurement,
namely, a measurement of the switching current ISW. To do
this, the bias current is slowly increased until a sharp, jump-wise
increase in R is observed. In such jumps, R increases from
apparently zero up to the normal resistance of the wire RN. The
current at which the jump occurs is called ISW. After the switching
event, the wire is in the normal state, due to excessive Joule
heating. To return the wire to the superconducting state, the bias
current has to be reduced considerably. The current at which the
wire switches back to the superconducting regime is called the
‘‘retrapping current’’ IR.

A typical dependence of the sample resistance on temperature
R(T) is shown in Figure 3. Due to the fact that the wire is
connected in series with the thin-film electrodes, two resistive
transitions are observed. At �6K the electrodes E1 and E2
(see Fig. 3) become superconducting. Thus, below this
temperature the measured resistance is entirely due to the
nanowire. The second transition (at �3.5 K) is due to the
nanowire losing its resistance. In all measured samples it was
found that wires made of MoGe alloy show a lower critical
temperature, compared to films of the same thickness. This
reduction (in the wires compared to thin films of the same
thickness) of the critical temperature may be due to reduction of
the screening of the Coulomb repulsion between the electrons,[16]
mbH & Co. KGaA, Weinheim 1113
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Figure 3. An R(T) curve for a typical sample involving a single MoGe
nanowire.[14] The template used to make the wire was a fluorinated carbon
nanotube. The sample resistance is plotted versus temperature in a
log-linear format. The first resistive transition, occurring at �6.0 K, is
due to the superconducting transition taking place in the film electrodes
that are linked to the wire. The second apparent transition, at �4 K,
corresponds to the occurrence of a superconducting behavior in the
nanowire. The negative curvature of the low-temperature part of the curve
indicates that the wire resistance drops, with cooling, at a rate that is faster
than exponential, i.e., in accordance with Arrhenius activation law, with the
barrier that depends on temperature (the red fit).

Figure 4. A series of voltage-versus-current curves V(I) of a typical sample
involving a single MoGe nanowire, measured at various temperatures.[14]

The switching current ISW and the retrapping current IR are indicated for the
curve measured at 0.3 K. The corresponding temperatures are 0.3 K
(corresponding to the highest ISW), 0.6, 0.9, 1.2, 1.5, 1.8, 2.1, 2.4 K. As
the temperature is increased the value of ISW decreases. This sample was
synthesized using a fluorinated carbon nanotube as template molecule.

1114
as well as due to the obvious fact that the wire oxidizes (when
exposed to air) from all sides, while the film oxidizes only at its top
surface. We define the normal-state resistance of the wire RN to be
the sample resistance measured immediately below the tem-
perature at which the leads become superconducting, as shown
by the arrows in Figure 3.

Voltage–current characteristics, measured at various tempera-
tures, of a typical sample with a single nanowire are shown in
Figure 4. The larger arrows show the directions of sweeping of the
bias current. The switching current ISW is marked by the upward
� 2010 WILEY-VCH Verlag Gmb
arrow. When the bias current is increased to the value of ISW the
wire switches abruptly to a resistive state, which is, in fact, the
normal state of the wire, maintained by Joule heating.[17]

The retrapping current IR is marked by the downward arrow.
The transition at IR is also abrupt. It is clear from the graph that
the switching current is very sensitive to changes in temperature.
As the temperature is increased, the ISW decreases significantly.
On the contrary, the IR is almost independent of temperature,
until the temperature reaches a higher value of T� 2K, at which
a noticeable decrease in IR is found with increasing the
temperature.
4. Little’s Phase Slip as a Mechanism of
Supercurrent Dissipation

Consider a model: a thin superconducting wire forming a closed
loop.[12] Suppose the initial state of the system is such that the
supercurrent IS in the loop is such that 0< IS< IC, where IC is the
critical current of the wire, i.e., the current that is sufficient to
destroy superconductivity. If fluctuations are weak, such a state of
the system would persist indefinitely. The analysis by Little[12]

shows that only strong fluctuations, viz., those that bring the
order parameter to zero at some spot along the wire, can cause the
supercurrent to decay.

The reason is the following. In a superconducting wire, IS�
f/L, where L is the wire length (or the loop length) and f is the
difference in the phase of the complex-valued wavefunction
describing the superconducting condensate. The phase differ-
ence is taken between the ends of the wire, if the wire is
connected to superconducting electrodes. In Little’s model, the
wire forms a loop, and thererfore f stands for the phase
accumulated along the closed path coinciding with the the loop
itself. As the wavefunction must be single-valued, the phase
difference around a closed loop is always f¼ 2pn. Here, n is an
integer that sometimes is called the ‘‘vorticity’’ of the state and can
be regarded as the number of coreless vortices trapped within the
loop (take notice: we are assuming here that the magnetic field is
zero everywhere). The fact is that unless n is changed the current
IS cannot change, because IS ¼ const� f ¼ const� n. Little’s
topological analysis of the loop model shows that the phase
difference f can only change if a strong and rare fluctuation
occurs, such that it brings the amplitude of the complex
wavefunction describing the condensate (sometimes called
superconducting ‘‘order parameter’’) to zero at some point on
the wire. If this happens, the phase can change by 2p (or integer
multiples of it.) One way to understand this is to realize that
without a magnetic field the supercurrent in the loop is
proportional to the number of coreless vortices n trapped within
the loop. To reduce the value of the supercurrent a vortex must be
expelled from the loop. To exit the loop, the core of a vortex must
cross the loop at some point. Thus, there is an energy barrier for
such process, which is roughly equal to the energy of the vortex
core positioned somewhere on the wire that forms the loop. The
vortex core is simply a normal (i.e., non-superconducting) region
of size roughly the superconducting coherence length j(T). At low
temperatures, the free energy of the superconducting state is
lower than the free energy of the normal state, and the difference
is given by the so-called condensation-energy density H2

c=8p.
H & Co. KGaA, Weinheim Adv. Mater. 2010, 22, 1111–1121
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Figure 5. Resistance-versus-temperature curve for a narrow supercon-
ducting bridge, the sample B2 from Reference [23]. This samples was
fabricated as is illustrated in Figure 1, including metallization with sput-
tered MoGe, except that instead of a nanotube a SiN bridge was used as a
template. Open circles represent direct low-bias transport measurements
of the sample resistance. Filled circles represent the resistance determined
indirectly, namely, by extrapolating high-bias segments of the nonlinear
V(I) curves. The solid (red) and the dashed (blue) curves give the best fits
generated by the RAL and RLAMH formulas, respectively. Both models show
a good agreement with the data. The downturn of the blue curve, which
corresponds to LAMH theory, is an artifact of the theory that is related to
the fact that the attempt frequency VLAMH goes to zero as T ! TC.
Thus, the energy barrier for such vortex-crossing process DF can
be estimated via DF � AjH2

c=8p, where Aj is the volume of the
normal region associated with the normal core position on the wire,
the cross-sectional area of which isA, andHc is the thermodynamic
critical field. The event when a vortex trapped in the the loop crosses
the wire (that makes the loop) and escapes to infinity is an example
of LPS. The essential properties of LPS are: (i) LPS can only occur if
the order parameter (represented by the radius of the order-
parameter spiral) reaches zero (at least instantaneously), and
(ii) LPS causes a change of the phase-difference by 2p, which
precisely means that the spiral, representing the order parameter in
the Argand diagram, loses one turn.

The rate of thermally activated phase slips (TAPSs), GTAPS, is
governed by the Arrhenius activation law and can be written as
G TAPS ¼ V exp �DF=kBTð Þ. Here, V is an effective attempt
frequency, which was estimated rigorously only for temperatures
near the critical temperature.[18] At low temperatures, when
thermal fluctuations are weak and the associated rate of phase
slips is low, quantum fluctuations might play a role and allow
the vortices trapped in a loop to escape by tunneling. Thus the
supercurrent would decay due to QPS. The rate of QPS is
determined by the quantum action of the vortex core crossing the
wire and can be roughly estimated, following the Giordano
model,[19] as GQPS ¼ VQPS exp �DF

�
kBTQ

� �
, where VQPS repre-

sent some effective attempt frequency of the quantum fluctua-
tions of the order parameter amplitude and TQ is a phenom-
enological parameter (quantum temperature) defining the
strength of quantum fluctuations.

One of the goals of developing the theory of phase slips is to be
able to predict the temperature dependence of the resistance of a
thin wire, R(T), such as those shown in Figure 3. The main
hypothesis needed for the calculation is that even if the wire is not
forming the loop but, instead, it is connected to some external
leads, which are used to inject the current into the wire, the
resistance of the wire would be determined exclusively by the LPS
rate (assuming that a dc measurement is considered). A detailed
theoretical analysis of such situation was given by Langer and
Ambegaokar[20] and by McCumber and Halperin.[18] The
corresponding theory is called LAMH theory. This theory does
not take into account the possibility of QPS but only treats TAPS.

Below we list the corresponding formulas. Within the
LAMH theory the resistance is predicted to be RLAMH Tð Þ ¼
RQ �hVTAPS=kBTð Þ exp �DF Tð Þ=kBTð Þ, where �h¼ h/2p, h is
Planck’s constant, kB is Boltzmann’s constant, DF(T) is the
temperature-dependent barrier for phase slips, and
RQ ¼ h=4e2 ¼ 6:5 kV is the quantum of resistance (in which
�e is the charge of the electron).[21] In the LAMH model, the
attempt frequency is given by[18]

VLAMH ¼ 1=tGLð Þ L=j Tð Þð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DF Tð Þ=kBT

p
(1)

Here, tGL ¼ p�h=8kB TC � Tð Þ is the so-called Ginzburg–Landau
relaxation time. LAMH theory is only valid near TC, because it is
based on time-dependent Ginzburg–Landau theory, which has a
narrow range of applicability. By some estimates,[22] it can only be
applied in a narrow range, such as 0.90TC<T< 0.94TC.

Thus, it is desirable to have approximations applicable at lower
temperatures. These approximations rely on the Arrhenius factor
Adv. Mater. 2010, 22, 1111–1121 � 2010 WILEY-VCH Verlag G
alone, which is correct down to zero temperature, providing that
only thermal activation—but not quantum tunneling—of LPS
needs to be accounted for (quantum tunneling will be discussed
separately, below). An approximate formula for the wire
resistance caused by TAPS is RAL Tð Þ ¼ RN exp �DF=kBTð Þ. It
can be referred to as the Arrhenius–Little (AL) formula because
the exponential factor is the usual thermal-activation law,
analogous to the Arrhenius law, and the prefactor is the normal
resistance of the wire. One can argue that such prefactor is
reasonable, based on the Little’s hypothesis that each phase slip
creates a region of size j(T ) that simply acts as normal metal and
has an electrical resistance of RNj Tð Þ=L. One needs to take into
account the fact that each segment of the wire does not stay
normal at all times but, rather, becomes normal only in the rare
event that an LPS occurs on the segment under consideration.[23]

It should be emphasized that RLAMH and RAL are qualitatively
distinct, in the sense that the prefactor of RAL includes the wire’s
normal resistance, whereas the prefactor of RLAMH is indepen-
dent of the normal resistance of the wire. Yet, the role played by
the prefactor is negligible in all practical cases so that both
formulas can be used to fit the experimental R(T) curves. This fact
is illustrated in Figure 5, where both types of fit are shown, and
both exhibit good agreement with the data. Thus, the LAMH and
AL formulas can be used interchangeably to approximate the
experimental results. There is some evidence though that the
LAMH fit overestimates the critical temperature of the wire.[23]

To complete the list of useful formulas, one needs the
expression relating the LPS barrier DF(T) to the critical current of
the wire IC(T ), which is[24]

DF Tð Þ ¼
ffiffiffi
6

p
�h=2eð ÞIC Tð Þ (2)
mbH & Co. KGaA, Weinheim 1115
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Another important estimation is the formula

DF 0ð Þ ¼ 0:83kBTc RQ

�
RN

� �
L=j 0ð Þð Þ; (3)

which relates the barrier for phase slips to the normal resistance
of the wire.[24] Close to TC the coherence length can be
approximated as j Tð Þ ¼ j 0ð Þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� T=TC

p
, where j(0) is the

zero temperature coherence length. There is also an expression
for the critical current of the wire, applicable at all temperatures,
namely, the Bardeen formula,[25]

IC Tð Þ ¼ IC 0ð Þ 1� T=TCð Þ2
� �3=2

(4)

5. Evidence for Macroscopic Quantum Tunneling

Quantum behavior involving macroscopic degrees of freedom—
i.e., physical variables describing large ensembles of particles—
represents one of the most exciting fields of modern physics. A
simple example of a macroscopic degree of freedom is the
position of the center of mass of a large object, say a C60

molecule.[26] Initiated by Leggett more than 25 years ago,[27]

research on macroscopic quantum tunneling (MQT) has under-
gone widespread development. Important settings for realizing
MQT phenomena include such diverse systems as super-
conductor–insulator–superconductor (SIS) Josephson junc-
tions,[28] and magnetic nanoparticles.[29]

The recognition of the advantages of quantum computers[30]

has motivated the search for viable implementations of quantum
bits, or qubits, several of which employ MQT in superconducting
systems.[31] Interestingly, it has also been proposed that super-
conducting nanowires, if they exhibit MQT, could provide a
possible setting for realizing novel qubits with improved
decoherence properties.[32]

Also, substantial evidence has accumulated to indicate that
MQT can occur in thin metallic wires of rather homogeneous
cross-section (see Reference [33] and references therein). In
nanowires, the MQT phenomenon is referred to as QPSs. The
occurrence of QPS implies that the wire is never truly
superconducting: its resistance does not approach zero even
when the temperature does. Thus, evidence for QPS is usually
sought via the observation of a nonzero resistance at tempera-
tures much lower than the critical temperature of the wire.
Typically, one concludes that QPS are present if R(T ) is flat at low
temperatures or if R drops with cooling slower than what might
be expected from the thermal activation law R� exp(�DF/kBT ).
On the other hand, our shortwiresmade ofMoGe did show strong
evidence in favor of the existence of a true superconducting
regime [which is characterized by R� exp(�DF/kBT)],

[2] i.e., a
regime without QPS. Note that at T> 0, the resistance is greater
than zero in any model, as some LPS thermal activation is
inevitable unless T¼ 0. The question that is not completely clear
is whether or not signatures of MQT can be observed in short
MoGe wires. (Empirically, ‘‘short’’ is defined as being shorter
than �250 nm.)

The possibility of MQT in superconducting junctions having
insulating barriers has been clearly demonstrated experimentally
(see Reference [34] and references therein). This was achieved by
� 2010 WILEY-VCH Verlag Gmb
exposing the samples to microwave radiation, and observing the
discrete nature of the allowed energy states of the entire device, as
one expects for a quantum system. More precisely, the
microwaves were able to excite the system from the ground
state to the next level, but only if the level spacing was equal to the
energy of the photons of the applied radiation. Thus, it was
possible to study the discrete energy states. Excitation of the
system was detected through the premature switching (due to
MQT) of the device from the superconducting to the normal state.

Recent experiments by Sahu et al.[14] give new evidence for
MQT in homogeneous superconducting wires. This evidence for
MQT is obtained by analyzing switching events, which occur at
high bias currents, close to the depairing current. Below, we shall
show how a detailed analysis of the statistics of the super-
conductor-to-normal switching currents can provide an affirmative
answer to the question of whether or not QPS can occur in
nanowires. The main point of argument is that at low temperatures
(T� 300mK) the fluctuations of the value of the ISW are much
larger than the value expected on the basis of thermal fluctuations,
and can be directly linked to QPS, which are a manifestation of
quantum fluctuations. Thus, it is found that, although short MoGe
wires do not exhibit QPS at low bias-currents, signatures of QPS do
appear at high bias-currents near the depairing current, via the
statistics of the premature switching events.[21]

5.1. Strong Fluctuations of the Value of the Switching Current

The switching current of a nanowire shows very pronounced
fluctuations, much stronger than the instrumental noise.[14] To
characterize the fluctuations of ISW quantitatively, the tempera-
ture is typically fixed and the V(I) curve is measured ten thousand
times. For each V(I) curve, the value of ISW is determined by
finding the current at which the voltage exceeded the noise floor
(�10mV) by about one order ofmagnitude. As the voltage jump at
the switching current is very strong, the results are independent
on the precise choice of the threshold voltage. The results of such
an analysis, for various temperatures, are shown in Figure 6. It
can bee seen that, as we increase the value of T (in the interval
0.3 K<T< 2.3 K), the distributions of the switching currents
become narrower (and correspondingly taller, while the area,
which represents the total number of measurements, is the same
for all curves). The vertical axis of Figure 6, marked ‘‘Count,’’ can
be expressed as Count ¼ 104P ISWð ÞDP, where 104 is the number
of measurements at each temperature, P(ISW) is the probability
density for the measured value of the switching current to be ISW,
and DP is the bin size chosen for plotting the distributions.
Figure 7 shows how the effective width of the distribution (i.e.,
the standard deviation of the measured set of switching

currents s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1

�
ISW;i � ISW

�2��
n� 1

�q
varies as a function

of temperature for samples S1–S5. These samples were fabricated

as is illustrated in Figure 1. The only difference between them is

that some are made thicker than others and so they exhibit larger

critical currents (the values of the critical current are given in

the caption to Fig. 7). In this definition, ISW,i represents the

104 measured data points for the switching current, whilst ISW
is the corresponding mean value. We find that (i) the standard

deviation (i.e., the fluctuation strength) increases with decreasing
H & Co. KGaA, Weinheim Adv. Mater. 2010, 22, 1111–1121
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Figure 6. Switching current distributions for sample S1. The distributions
are presented for 21 different temperatures in the range between T¼ 0.3 K
(right-most peak) and T¼ 2.3 K (left-most peak), with a step size of
DT¼ 0.1 K. The parameters of the sample were the length L¼ 110 nm
and the normal resistance RN ¼ 2:67 kV. To obtain the distribution at each
temperature the current was swept 104 times, starting from zero up to a
value above the switching current. The exact value of the current at which
the switching events occurred was recorded for each of the 104 sweeps. The
histogram is plotted by choosing the bin size to be DI¼ 3 nA. The vertical
axis can be expressed as Count ¼ 104ð Þ P ISWð Þð Þ DIð Þ, where 104 is the
number of measurements and P(ISW) is the probability density for
the device to switch to the normal state when the bias current has the
value ISW.

[14]

Figure 7. Temperature dependence of the standard deviation of the
switching current distribution, plotted versus temperature, for five different
samples. The measurements for samples S1 and S2 were repeated more
than once, in order to verify their reproducibility. The corresponding values
of the critical depairing current for samples S1–S5 are IC(0)¼ 2.92, 1.72,
1.68, 1.10, and 6.16mA. The values of the critical current are obtained via a
fitting procedure explained in the text.[39,14]
temperature, and (ii) the samples having larger critical currents

are characterized by larger values of s.
It should be emphasized that the observed broadening of the

distributions with cooling is, in general, unexpected, as thermal
fluctuations, presumably causing the fluctuations in the ISW
values, would become weaker with cooling. Note that measure-
ments on SIS Josephson junctions do indeed show just such a
trend: the fluctuations became weaker with cooling.[34,35]

5.2. Extracting Switching Rates

Further understanding of the statistics of the switching events can
be achieved by applying the analysis of Fulton and Dunkleberger
Adv. Mater. 2010, 22, 1111–1121 � 2010 WILEY-VCH Verlag G
(FD).[35] First, we note that the values of s introduced above, as
well as the exact shape of the P(ISW) curves (Fig. 6), are not
universal. They depend on the bias-current sweeping rate dI/dt
chosen during the measurements of the switching events. The
general rule is that: the faster the sweeping rate, the smaller
the difference between ISW and the depairing current of the
wire IC¼ IC(T). In the limit dI=dt ! 1, the premature switching
does not have time to happen, and the distribution function
becomes a Dirac d-function centered at IC(T), namely,
P ISWð Þ ¼ d IC Tð Þ � ISWð Þ, and also s¼ 0. The depairing current
is the current at which the superconductivity breaks down with
certainty because the superconducting state free energy becomes
larger than the free energy of the normal state. Therefore, P(I)¼ 0
for I> IC(T).

The FD analysis allows one to convert the sweep-rate-
dependent distribution function P(ISW) into the sweep-rate-
independent switching rate function G(T, I). The analysis is based
on the relation

P Ið ÞdI ¼ G Ið Þ dI=dtð Þ�1dI 1�
Z 0

I
P I0ð ÞdI0

� �
; (5)

where P(I)dI is the probability that the device switches to the
normal state in the interval between bias currents I and Iþ dI,
(dI/dT)�1 dI is the duration of time during which the bias current
belongs to the interval between I and Iþ dI, G(I) is the switching
rate (i.e., the average number of switching events that the system
would undergo if the bias current would be fixed at I), and the
expression 1�

R I
0 P I0ð ÞdI0

� �
¼
R IC
I P I0ð ÞdI0 gives the probability

that the current is swept from zero to I without switching.
In general, the sweeping rate can be a function of the value of

the current. For example, if the bias current has a sinusoidal time
dependence I tð Þ ¼ Ia sin vtð Þ then the sweeping rate is given

by, dI=dT ¼ Iav cosðvtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðI=IaÞ2

q
, where Ia is the

amplitude of the bias current, which must satisfy Ia> IC(T). In
the experiment,[14] a triangular sweeping function was used, such

that Ia ¼ 2:75 mA and dI=dt ¼ 125:5 mA s�1.
As, in practice, the histogram is expressed in digital format, the

expression for the switching rate needs to be expressed in terms
of finite sums rather than integrals. Let the current axis be split
into bins of size DI and the corresponding current values be
numbered Ik ¼ IC � kDI, where the integer bin number k obeys
0< k<N, with the highest bin numberN defined viaN ¼ IC=DI.
This type of definition implies that bin number zero corresponds
to I¼ IC and the higher numbers correspond to lower currents.
Then the switching rate can be expressed as:[35]

G k ¼ G Ikð Þ ¼ dI

dt
1=DIð Þ ln

Pk
i¼0 P Iið ÞPk�1
i¼0 P Iið Þ

 !
(6)

5.3. Correspondence Between Switching Events and

Phase Slips

The results of the FD-type analysis are shown in Figure 8 for a
measurement done at a low temperature, namely, at T¼ 300mK.
The open circles represent the dependence of the switching rate
mbH & Co. KGaA, Weinheim 1117
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Figure 8. The experimental switching rate (open circles) and the calculated
QPS rate (solid blue line) are shown for T¼ 0.3 K for the sample S1. The
observed agreement is very good. Various estimates of the TAPS rate by
using different attempt-frequency expressions are also shown by solid red,
green, and gray lines. For all estimates of the TAPS rate, the experimental
values are at least 1017 orders of magnitude higher than the calculated
thermal rate. Hence, the data cannot be explained by considering thermal
fluctuation alone, even if the uncertainty in the attempt frequency is taken
into account.[14]

1118
on temperature, and the continuous curves represent different
models. The best fit is provided by the QPS model, whilst the
models involving only thermal fluctuations and neglecting
quantum fluctuations (TAPS models) do not agree with the data
at all.

In order to obtain the fits of Figure 8 we have to make an
assumption about the relationship between single phase slips
(whether thermally activated or quantum) and the switching
events observed in the experiment. The simplest assumption is
that a single phase slip corresponds to every switching event.
Under such hypothesis, as the current is increased the wire
initially remains fully superconducting (i.e., it shows zero voltage
even though the current is greater than zero) until a single TAPS
or QPS occurs. As soon as a single phase slip happens, it
dissipates the kinetic energy of the supercurrent in the wire as
heat. The heat dissipated as a result of a single LPS is
DELPS ¼ hI=2e. Note that the released heat is proportional to
the bias current. A detailed analysis of the heating effect in
suspended wires, due to Shah et al.,[36] shows that if the
temperature is sufficiently low (and T¼ 300mK was sufficiently
low for our samples), the dissipated energy DE is sufficient to
increase the temperature of the wire above its current-dependent
critical temperature TC(I). To understand why at low tempera-
tures a single LPS is sufficient to increase the temperature of the
wire above TC(I) while at higher temperatures a single LPS is not
sufficient we first remind the fact that LPSs are less frequent at
low temperatures for a given value of the LPS barrier. Thus, as the
current is slowly increased, the wire stays LPS-free until the
current is very near the depairing current. Therefore, the first
phase slip occurs when DELPS is high and TC(I) is low, so just one
LPS is sufficient to overheat the wire above the current-dependent
critical temperature. At sufficiently higher temperatures the LPS
start to occur with an appreciable frequency, even at a low bias
current at which ELPS¼ hI/2e is still low and TC(I) is high. Thus
one LPS cannot overheat the wire. If overheating happens, the
� 2010 WILEY-VCH Verlag Gmb
wire becomes normal, at least for a short time, until the dissipated
heat has enough time to flow away from the nanowire (this
typically takes some nanoseconds). As the current through the
wire I is set by an external current source, the current keeps
flowing even if an LPSmakes it temporarily nonsuperconducting.
The additional Joule heating generated due to the current passing
through a nonsuperconducting region of the wire leads to further,
rapid growth of the temperature, which eventually leads to the
observable switching event. Thus, the statistics of the switching
events is in one-to-one correspondence with the statistics of phase
slips—at low enough temperatures when a single LPS canmake a
small segment of the wire normal, at least for a short period of
time. In order to explain these stochastic features quantitatively,
we review below the formulas describing the rates of QPS and
TAPS.
5.4. Rates of Phase Slips

The rate of TAPS is given by the Arrhenius-type expression[21]

G TAPS ¼ VTAPS=2pð Þ exp �DF=kBTð Þ (7)

By analogy, the rate of QPSs can be estimated as

GQPS ¼ VQPS=2p
� �

exp �DF=kBTQ

� �
(8)

which was justified by Giordano[19] and Lau et al.[37] Here, TQ is an
effective temperature characterizing the strength of quantum
fluctuations.[34] If the device under consideration contains a
superconducting wire that links two macroscopic electrodes
(as is the case in the experiments discussed in the Research
News), the kinetic inductance of the wire is given by[38]

LK ¼ L=j Tð Þð Þ�h=3
ffiffiffi
3

p
eIC, and the electrical capacitance between

the electrodes is CE, then the quantum temperature can be
roughly estimated as TQ ¼ �h=kBð Þ

� ffiffiffiffiffiffiffiffiffiffiffi
LKCE

p

To analyze data at temperatures well below TC, we estimate the
barrier for phase slips by combining Equation (2–4). The result is
a formula that is valid, to a good approximation, over a wide
temperature range:

DF Tð Þ ¼
ffiffiffi
6

p
�h=2eð Þ

� �
0:83kBTC RQ

�
RN

� �
L=j 0ð Þð Þ

� 1� T=TCð Þ2
� �3=2

(9)

In order to make fits to the experimentally obtained switching
rates, one needs to know how the barrier for the LPS changes with
the bias current. The corresponding formula is[17]

DF I;Tð Þ ¼ DF 0;Tð Þ 1� I=IC Tð Þð Þ5=4 (10)

where DF(0, T) is the barrier energy to phase slip at zero current
and a given temperature. It is worth noting that the correspond-
ing expression for the more thoroughly studied case of a
Josephson junction has the same form,[21] but an exponent of 3/2
instead of 5/4. Qualitatively, the two cases are very similar.[17]
H & Co. KGaA, Weinheim Adv. Mater. 2010, 22, 1111–1121
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Figure 9. a) Switching rates from the superconducting state to the resis-
tive state for bath temperatures between 2.3 K (left most) and 0.7 K (right
most). (For the sake of clarity, not all the measured curves are shown here.)
The data are shown for all temperatures between 2.3 and 1.1 K with
DT¼ 0.1 K as well as for T¼ 0.9 K and T¼ 0.7 K (sample S1). The symbols
are experimental data and the lines (with corresponding colors) are fits to
the overheating model, incorporating stochastic TAPS-only events.[14,36]

The fits agree well with the data down to T¼ 1.3 K, which is indicated by an
arrow. b) Fits to the same data (all temperatures are shown here) with the
stochastic overheating model but now incorporating both TAPS and QPS
rates. The boundary for the single phase-slip-switching regime is indicated
by the black diamond symbols, connected by line segments, for four
temperatures. The single-phase-slip switching regime occurs to the right
of the line connecting the diamonds.[39]
The attempt frequency for the QPS can be plausibly estimated
from the LAMH attempt frequency, Equation (1), by replacing
the thermal energy kBT by an effective quantum energy.
In Reference [14] the choice was made to make the following
replacement in the LAMH expression for the attempt frequency:
DF=kBT ! DF

�
kBTQ. There is no rigorous justification for such

replacement. But, fortunately, the choice of the attempt frequency
is not important, as the expression for the switching rate is always
dominated by the exponential factor, as we shall discuss below.
The QPS attempt frequency thus becomes:

VQPS ¼ 8kB TC � Tð Þ=p�hð Þ L=jðTÞð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pDFðTÞ=kBTQ

q
(11)

The QPS switching rate computed using Equation (8–11) is
plotted in Figure 8 versus the bias current (see the blue curve,
marked 1). The fitting parameters used are TQ¼ 0.85K,
TC¼ 3.87K, and j(0)¼ 5 nm. The parameters known from
independent measurements are the normal resistance and the
sample length, namely, RN ¼ 2:67 kV and L¼ 110 nm. The
calculated rate is in a good agreement with the data. Thus, the
hypothesis that QPS control the observed strong fluctuations of
the switching current finds significant justification. Additional
justification comes from the fact that TQ was observed to become
greater in wires of larger diameter, which have higher critical
currents.[14] If the observed strong fluctuations of ISW were due to
some trivial reason, such as an excess electromagnetic noise in
the setup leads, or granularity in the wires, then one would expect
to see a smaller TQ in thicker wires. This is because thicker wires
would, presumably, be less susceptible to problems such as
electromagnetic noise or granularity of the wire. In reality, larger
TQ values were found in thicker wires.[14]

On the other hand, curves 2–4 (see Fig. 8) all represent the
TAPS model, given by Equation (7). The reason we show three
curves is that in this model the attempt frequency is not well
established, except very near TC.

[22] In the case of curve 2, LAMH
theory was followed and the assumption was made that
VTAPS ¼ VLAMH (see Eq. (1)). Curve 3 (green) is plotted using
a modified attempt frequency. The new expression is obtained by
using Equation (1) and replacing 1/tGL with vp, where
vp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eIC Tð Þ=�hCE

p
is the so-called plasma frequency of a

Josephson junction. Curve 4 (gray) is again obtained using
Equation (1) but this time replacing 1/tGL with vw, where
vw ¼ 1

� ffiffiffiffiffiffiffiffiffiffiffi
LKCE

p
is the analog of the plasma frequency for a

system having a nanowire. Apparently, none of the TAPS
expressions tested can fit the data. Also it is clear that the
exponential factor dominates over the pre-exponential attempt
frequency. In other words, any tested choice of the attempt
frequency gives almost the same result: the curves 2–4 are very
close to one another. This gives evidence that, as with TAPS, the
choice of the attempt frequency for QPS is not essential and need
not be known precisely.

Finally, a general model was developed, which takes into
account both TAPS and QPS. The model also takes into account
the fact that at higher temperatures a single LPS is not sufficient
to cause a switching event.[14,36] On the contrary, the model
predicts that, at higher temperatures, many phase slips must
occur almost simultaneously in order to overheat the wire and
Adv. Mater. 2010, 22, 1111–1121 � 2010 WILEY-VCH Verlag G
switch it into the JNS.[14,36] This conclusion is directly confirmed
by the fact that the V(I) curves measured at higher temperatures
(i.e., close to TC) show nonzero voltages before the switch to the
JNS occurs. For example, on sample S1 such a pre-switching
voltage tail was observed down to T� 2.5 K.[14] This fact confirms
that LPSs occur before the switch. The results of the general
model, in comparison to the experiment, are shown in Figure 9.
In Figure 9a the experimental switching rate was compared to a
partial model, which includes only TAPS. It is clear that themodel
of overheating with TAPS works well at higher temperatures, but
fails to describe data below T� 1K. Thus, one needs to bring QPS
into consideration. The fitting curves in Figure 9b are computed
by including both the TAPS and QPS switching rates. In this case,
good agreement is observed over the entire temperature interval,
down to T¼ 0.3 K. Thus, it is clear that the phenomenon of MQT
must be included in the model in order to obtain reasonable
agreement with the data. We also note that the general
overheating model[36] provides a natural explanation of the
observed growth, as the temperature is reduced, in the
fluctuations of ISW (see Fig. 7). The explanation is that a smaller
and smaller number of LPSs is required to overheat the wire as
the temperature is reduced. Thus, the stochastic nature of the
switching process becomes more pronounced.

6. Summary

In this Research News article we have covered three main topics:
i) the molecular templating technique for making nanowires, ii)
the transport properties of molecule-templated superconducting
nanowires, and iii) evidence for the occurrence of MQT in
nanowires at high values of the supercurrent.
mbH & Co. KGaA, Weinheim 1119
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The best molecules for fabricating nanowires turn out to be
fluorinated single-walled carbon nanotubes. DNA has the
disadvantage of being less rigid, compared to carbon nanotubes.
Also, nanowires made with DNA tend to be somewhat larger in
diameter, possibly because the DNA molecule has a larger
diameter after being suspended and dried, due to the difficulty of
removing all contamination surrounding the molecule. The
potential advantage of DNA molecules, associated with their
ability to self-assemble into complex constructs with pre-designed
geometries, has not, to date, been realized and employed for the
fabrication of superconducting networks (except DNA-templated
nanowire SQUIDS having two nanowires in parallel).[7,8] This
possibility remains for future research on molecule-templated
devices. The idea would be to design and synthesize DNA
molecules of well-defined sequences of base pairs, and to then
allow these molecules to self-assemble into a network with a
desired structural configuration.[40] It is expected that such
networks can be formed in a suspended state and then coated
with superconducting metal or alloy. Thus, a network of ultrathin
superconducting wires would be obtained. Such superconducting
wire networks could be used for information processing, where
the information bits are represented by different values of
quantized supercoducting currents circulating around the cells of
the network.

Transport measurements on thin superconducting wires
confirmed the expected absence of a thermodynamic normal-
to-superconductor phase transition. This absence is explicitly
manifested by the fact the the resistance remains greater than
zero at any nonzero temperature (although it does become
smaller with cooling and can fall below the sensitivity of the
experimental setup). The resistance is governed by the Arrhenius
law of thermal activation, the energy barrier of which is
determined by the free energy required to convert a segment
of the wire from the superconducting to the normal state.

Proving that MQT does indeed occur in thin superconducting
wires is a formidable task. The difficulties arise because other
factors can be easily mistaken for MQT. Our approach for
showing the existence of MQT is based on a trigger effect that is
related to the Joule-overheating of the wires. When a single
phase-slip occurs, the temperature of the wire jumps, switching
the wire to the normal state. Such switching events are easy to
detect, in contrast with individual phase slips. The proof of the
existence of MQT is based on our observations (i) that the
fluctuations of the switching current are much larger than would
be expected on the basis of thermal fluctuations at a given
temperature, and (ii) that the observed fluctuations are larger in
wires that have larger critical currents.

In the future, we plan to continue studies of MQT effects in
thin wire devices. The next step will be to employ an
environmental dissipation bath, possibly represented by a normal
resistor, in order to control the rate of QPS, following the general
ideas set forth by Leggett.[27]
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